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ABSTRACT

With the sprawling of major cities and creation of suburban areas, one problem that state

agencies face is the increasing congestion in suburban arterials coupled with the safety risks posed

by increasing traffic volumes at traditional intersections along arterials. In the early 1960s, a new

intersection design was developed and installed in the state of Michigan, where left turns at

intersections were replaced by median U-turn lanes (MUTs). This study focuses on the safety

performance of corridors where median U-turns (MUTs) are present along urban and suburban

boulevards. The analysis is performed in two stages; first models were developed separately for

assessing the safety performance, through the examination of crash frequency and type, across

individual MUTs, at intersections, and along segments on which MUTs are located. Subsequently,

an aggregate-level analysis is conducted to assess the safety performance of specific

intersections/MUT combinations. The second stage focused on developing models for

examination of sites spanning each side of an intersection including upstream and downstream

MUTs. These sites were compared to sample sites with allowed traditional left turn movements.

Ultimately, the results provide guidance to agencies considering the installation of such alternative

intersections.

Additionally, safety risks are present during work zone projects along freeways, which are

essential facilities for providing mobility. The presence of a work zone generally results in both

mobility and safety impacts to road users. Minimizing the adverse impacts associated with work

zones has become a priority for road agencies. This study will estimate SPFs that consider freeway

geometry and traffic conditions, as well as the effects of various temporary traffic control strategies

such as lane shifts, shoulder closures, and lane closures. Crash modification factors were
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developed for work zone duration and length. Additionally, the study results provide insight on

the safety impacts associated with each of the four types of lane closures.
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CHAPTER 1. INTRODUCTION

1.1 Statement of Problem

Although there had been a steady decline in traffic fatalities in the United States since 1996, the

first half of last year saw the largest increase of about 10 percent in traffic fatalities in two decades

(NHTSA, 2016). Extensive initiatives have been implemented at a national level, including

mandates driven by recent transportation legislation. These efforts have led to agencies taking a

more proactive approach to highway safety at all stages of transportation projects. States have

implemented Highway Safety Improvement Programs (HSIPs) that are data-driven and aim toward

continuing reductions in the frequency and severity of crashes. To this end, there has been

extensive research focused on exploring those factors that affect the frequency and severity of

crashes on various roadway facilities. Determining these relationships between various roadway,

traffic, and behavioral factors with crash frequency and severity will allow transportation agencies

to make more well-informed decisions in site prioritization and countermeasure selection, leading

to more effective utilization of limited transportation funding.

Various research studies have helped to establish relationships between crashes and important

explanatory variables such as traffic volumes, roadway geometry, and environmental

characteristics. National guidance as to analysis methods that are appropriate for transportation

safety are provided in the Highway Safety Manual (HSM), the first edition of which was published

by the American Association of State Highway and Transportation Officials (AASHTO, 2010).

Part C of the HSM presents a series of predictive models that can be utilized by state agencies to

predict crash frequency for various roadway facilities, such as intersections and roadway segments,

as a function of traffic volumes, roadway geometry, type of traffic control, and other factors. These

crash prediction models, also known as safety performance functions (SPFs), can be utilized to
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estimate the safety impacts of site-specific design alternatives or to prioritize candidate locations

for safety improvements on a network basis. As part of this process, these SPFs can also be

integrated with decision support tools, such as SafetyAnalyst and the Interactive Highway Safety

Design Model (IHSDM) (AASHTO, 2010).

The first edition of the HSM includes separate families of SPFs for three specific facility types: (1)

Rural Two-Lane, Two-Way Roads (TWTL); (2) Rural Multilane Highways; and (3) Urban and

Suburban Arterials.  Chapters 10, 11, and 12 of the HSM provide full details of the SPFs for these

respective facility types, which were developed based upon the results of empirical studies

(Harwood et al. 2000; Vogt, 1999; Vogt and Bared, 1998; Lord et al. 2008; Harwood et al., 2007;

Harwood et al., 2008).  Subsequent research that will be integrated into the second edition of the

HSM has analyzed other facility types, which include freeways and interchanges (Bonneson et al,

2012), as well as six-lane and one-way urban and suburban arterials (NCHRP 17-58, 2016).

While the SPFs presented in the HSM provide useful tools for road agencies, it is recommended

that these functions are either calibrated for local conditions or re-estimated using local data to

improve their accuracy and precision (AASHTO, 2010).  A variety of states have conducted

research that has shown the accuracy of the SPFs from the HSM to vary considerably from state to

state as a result of differences in geography, design practices, driver behavior, differences in crash

reporting requirements, and other factors. (Garber et al, 2010; Tegge et al, 2010; Dixon et al, 2012;

Srinivasan and Carter, 2011; Brimley et al. 2012; Bornheimer et al. 2012; Lu et al. 2012; Lubliner

and Schrock, 2012; Srinivasan et al. 2011; Alluri and Ogle, 2012). The variation in the

performance of SPFs across jurisdictions creates the need for jurisdiction-specific SPFs, which

allow transportation agencies to more efficiently invest available safety resources.
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1.2 Research Objectives

Beyond providing analytical tools to assist transportation agencies in proactive decision-

making, there remain a number of important safety-related issues related to design, operations, and

maintenance that are under researched. Ultimately, the results of this research will provide

important insights of practical value to transportation agencies and safety researchers based on the

results of two studies, the objectives of which are briefly detailed here:

1. First, jurisdiction-specific SPFs are estimated to identify factors that are

determinants of crash frequency and crash type for urban and suburban divided

roadways using data from the state of Michigan. This study focuses on the safety

performance of corridors where median U-turns (MUTs) are present along urban

and suburban boulevards. Crash, traffic, and roadway geometry information were

utilized to develop crash prediction models. First, separate models were estimated

to examine how the presence of MUTs affects the safety performance: (a) across

individual MUTs; (2) at intersections near the MUTs; and (3) along the overall

segments on which the MUTs are located. This initial disaggregate-level analysis

examines the frequency and type of crashes at each facility type. Subsequently, an

aggregate-level analysis is conducted to assess the safety performance of specific

intersections/MUT combinations. For this second analysis, the sites examined

included the portions of individual road segments spanning each side of the

associated intersection, including the upstream and downstream MUTs. A sample

of sites with MUTs installed was compared to a sample of sites where traditional

left-turn movements were allowed. Ultimately, the results provide guidance to

agencies considering the installation of such alternative intersections.
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2. The second study examines how crash frequency is affected by various lane

closures that are commonly implemented in freeway work zones, again focusing on

data from Michigan. The research examines temporary traffic control strategies in

long-term freeway work zones.  To this end, 790 work zone locations occurring on

freeways between 2008 and 2013 were examined. These work zones were in place

for a minimum duration of three days and cover a length of at least 0.4 miles. The

types of work zones considered include shoulder closures, single-lane closures,

multi-lane closures, and lane shifts. This study provides important information

regarding the safety implications that each of these temporary traffic control

strategies introduce.

1.3 Organization of Dissertation

This dissertation consists of five chapters. Having detailed the topics being investigated

and outlined the research objectives in this chapter, the remaining chapters are focused on the

following topics:

 Chapter 2 presents a summary of previous findings on operational and safety

performance of Median U-Turns (MUTs), collection and processing of data from

various sources, analysis framework, and finally discusses the results obtained

related to the safety performance of MUTs on urban and suburban boulevard

intersections and segments for the state of Michigan.

 Chapter 3 describes similar steps taken to assess the safety impacts of four types

freeway work zones in the state of Michigan. The four types of work zones studied

included shoulder closure, single lane closure, multi-lane closure, and lane shifts.
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 Chapter 4 presents the major findings from each of the previous three chapters, lists

any limitations of these studies, and provides an overview of potential future

research avenues.
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CHAPTER 2. SAFETY PERFORMANCE OF MEDIAN U-TURNS ON URBAN AND

SUBURBAN ARTERIALS

The aim of this study is to develop a series of SPFs for urban and suburban 4-lane, 6-lane, and 8-

lane divided arterials in Michigan. Urban arterials are generally designed to provide the highest

level of service and speed. However, these roadways must also provide access to collector and

local roads or directly to developments. This requires potential tradeoffs between mobility and

safety. Consequently, it is imperative to be able to accurately predict the number of crashes that

would be expected on such facilities. To this end, SPFs will be estimated to relate crashes to traffic

volumes, roadway geometry and operational characteristics. In particular, the presence of median

U-turns (MUTs) on urban and suburban divided roadways will be studied and its safety effects on

both crash frequency and crash type will be examined.

As a part of this examination, this research also aims to provide guidance as to safety

performance as it relates to a specific traffic control strategy that has been widely implemented

throughout Michigan since the 1960s. This treatment, widely referred to as a “Michigan Left-

Turn”, involves the prohibition of left turns, instead requiring drivers to utilize turning lanes

downstream of the intersection for drivers to complete left-turn maneuvers. These turning lanes

are also referred to as MUTs or crossovers. MUTs were installed to avoid interlocking left turn

movements at intersections, thus improving operations and reducing delay (Reid et al, 2014).

Despite having been installed as a solution for congestion problems, MUTs have also been studied

for their safety effects, although these studies have been mostly at isolated intersections and/or for

small samples of data. As state agencies are moving towards considering several design

alternatives for improving congestion and safety problems in roadway system, there needs to be

straightforward evidence of the potential benefits that these design alternatives have compared to
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more traditional intersections. This study will examine the impact of MUTs on crash frequency

and type of urban and suburban trunklines as well as investigating the type of crashes and crash

frequency in the vicinity of MUTs. The examination is done in two parts; the first part is performed

at a disaggregate level, separately for the divided boulevard facilities of intersections, segments,

and MUTs. This is done to account for the fact that a large part of these installed MUTs serve

multiple intersections along the boulevard; e.g. a pair of MUTs will serve one major 4-leg

intersection as well as additional 3-leg (most likely stop-controlled) intersections located along the

boulevard. It is thus imperative to assess the performance of these MUTs for the boulevard segment

crashes and intersection crashes. The second portion of the examination is performed at the

aggregate level; this includes a comparison of sites that expand in length on each side of the

intersection to the nearest MUT (including the MUT facility).  Sites of similar length with MUTs

and traditional left turns are compared in total crash frequency, as well as various crash types to

assess the safety performance of MUTs in the area of the intersection and adjacent to it.

2.1 Literature Review

With the sprawling of major cities and creation of suburban areas, one problem that state

agencies face is the increasing congestion in suburban arterials. Additionally, the increasing traffic

volumes pose safety risks, especially at traditional intersections along these arterials. Since the

early 1960s, with the first installation of a Median U-Turn (MUT) on the intersection of 8 Mile Rd

and Livernois Avenue, in Wayne County, Michigan. (Reid et al, 2014), a greater number of

alternative intersection designs have been implemented in various states. Some of these designs

include MUTs and Restricted Crossing U-Turns (RCUT), among other alternatives.
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The alternative intersection design of MUT prohibit direct left turns at the intersection.

Instead, drivers are provided with a combination of right turns and U-Turns in order to complete

the desired left turn. Figure 1 illustrates the movements a driver would have to make from the

major road or the minor road to complete a left turn in the presence of an MUT. The installation

of MUTs started in the state of Michigan, especially in the Detroit Metropolitan area, in the 1960s

as a solution for reduced capacity in wide-median highways, caused by interlocking left turn

movements at traditional intersections. Nowadays, more than 700 MUTs exist along urban

corridors. According to the Michigan Department of Transportation (MDOT), the decision of

where to install MUTs is made after studying crash history of major divided road intersections.

They are mainly used in urban areas and not recommended for limited-access roadway facilities

such as freeways (Reid et al, 2014).

Figure 1. Schematic of the Michigan MUT (Bessert, 2017)

The other popular intersection design known as Restricted Crossing U-Turn or RCUT, was

developed to solve the same problem of congestion in suburban arterials and was first by Richard

Kramer and was also developed independently in Maryland and North Carolina. The Maryland

State Highway Administration developed an unsignalized version of RCUT intersection design,
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called J-turns (Hummer et al, 2014). The J‐Turn intersection design better serves an intersection

with more major road left turns than minor road through movements (Mississippi DOT, 2010).

The two intersection design alternatives are similar in that they restrict left turn movements from

the minor road onto the major road, however, there are two main differences between the two

designs: a) MUTs allow through movement for both the major and minor roads, whereas RCUTs

only allow through movement for the major road, and b) MUTs prohibit left turn movements from

both the major road and the minor road whereas RCUTs only prohibit left turns from the minor

road. Substantial research has been conducted in assessing the operational performance and the

safety performance of these alternative designs.

2.1.1 Operational Performance Research

Several studies have compared traffic operations between arterial corridors with Two-Way

Left Turn Lanes (TWLTL) with corridors with MUTs. The main results reported were:

 MUTs demonstrated a 17 percent decrease in total travel time within the study area and a

25 percent increase in average traffic speeds. However, the number of stops along the

corridor increased (Reid and Hummer, 1999).

 The corridor capacity experienced a 20 to 50 percent increase (Savage 1974, Maki 1992)

 The MUTs provided lower network travel times compared to the five-lane TWLTL design.

When the left turn volume percentages were low, the left-turn total time and network total

time were similar for directional medians with stop control and signalized directional

medians.

In a comparison study of seven unconventional intersection designs, including the

quadrant, MUT, superstreet, bowtie, jughandle, split intersection, and continuous flow
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intersections with traditional intersections, Reid and Hummer (2001) reached the following

conclusions:

 MUTs produced significantly lower average total travel times

 The change in overall travel times for all movements through the intersection was −21 to

+6 percent during peak conditions.

 The overall change in the number of stops was −2 to +30 percent during peak conditions.

Topp and Hummer (2005) compared MUTs on arterial highways with MUTs on the cross

street with varying left turn and through volumes for the major and minor roads. The results

showed that the MUT design located along the cross street performed better than the MUT design

located on the major arterial in terms of reducing percent stops, total travel time, and delay for

most of the volume combinations.

2.1.2 Safety Performance Research

Hummer and Reid (2000) compared the safety effectiveness of MUTs with two-way left

turn lanes (TWLTL) and medians with conventional left turns on Michigan arterials. The results

showed that collision rates were higher for TWLTL, slightly lower for unsignalized intersections

with medians, and much lower for signalized MUTs.

Maki (1996) examined the safety benefits of replacing traditional signalized intersections

with MUTs through a before and after study. The study segment was less than 0.5 miles long,

located on Grand River Ave in Wayne County, Michigan, and 5 years of data (1990-1995) were

utilized. Kach (1992) also compared the safety performance of conventional signalized

intersections to MUTs locations in the State of Michigan, however, the comparison study sample

consisted of only 15 MUTs and 30 conventional intersections.
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Taylor et al (2001) conducted before-and-after analyses of replacement of bidirectional

crossovers by directional crossovers. The former crossover allows turning movement in both

directions while the latter only allows movements in one direction only. The results were

comparable and showed reduction in total crashes as well as significant reduction in angle crashes.

However, the study did not account for traffic volume changes, seasonal effects, or regression-to-

the-mean. The difference in crash rate occurred in the presence of traffic signals, and as the traffic

signal density increased, the crash rate was almost halved.

Studies were also performed to explore the safety effects of U-turns at signalized

intersections. Carter et al. (2005) determined that signalized locations with double left-turn lanes,

high left-turn, conflicting right-turn traffic volumes, and especially protected right-turn overlap,

experience the greatest number of U-turn collisions. (Hughes et al. 2010) provided results which

demonstrated the benefits of implementation of U-turns from conventional four-leg signalized

intersections. U-turns reduced various type of crashes such as rear-end, angle, and sideswipe

collisions by 17, 96, and 62 percent, respectively.

Castronovo et al. (1995) compared the safety benefits of MUTs with traditional

intersections for 123 segments of boulevards. The results indicated lower MUT crash rates for

higher signal density. On suburban segments with signal densities of one or more signals per mile,

the crash rate for MUTs was 50 percent less than the crash rate of conventional intersections. In

rural segments with signal densities of 1 or fewer per mile, the crash rate was reduced by 36 percent

as compared to conventional intersections.

U-Turns have also been installed in high speed rural roadways. Tarko et al. (2012) used a

multivariate probit model to simultaneously estimate crash frequency and severity for rural roads
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in Indiana as a function of traffic volumes and roadway characteristics. Median width and the

presence of left and right acceleration lanes were shown to reduce crashes. The study included the

examination of the effect of U-turns on crashes for 72 stop-controlled intersections in Michigan.

The results showed that the presence of U-turns increased crashes, thus being counterintuitive.

This could be due to endogeneity since these U-turns could have been installed to remedy

underlying issues with traffic operation and safety. Therefore, the presence of U-turns does not

represent a countermeasure but the presence of a safety problem. The transferability of model

parameters between Indiana and Michigan was tested using the likelihood ratios test and was found

inconclusive. This could be due to differences in data collection and certain aspects of data missing

from the Michigan intersection datasets. Also, the sample size for Michigan intersections was

much smaller than the sample size for Indiana, which can magnify irregularities and result in biased

parameter estimates.

The study by Olarte et al. (2011) aimed to provide designers and decision-makers with a

model which they can utilize to evaluate the feasibility and suitability of implementing

unsignalized restricted crossing U-turns (RCUT) in rural intersections. An example of such an

intersection geometry is illustrated in Figure 2. It can be seen that the left turn movements from

the major road onto the minor road are permitted, however, separation is provided between the left

turning lanes. The study identified the sites that were susceptible to bottlenecks and provided a

regression model relating traffic density to traffic volumes. The second objective was to examine

the relationship between traffic conflicts and traffic volumes through graphical means. Based on

safety, the authors recommend that designers implement RCUTs by placing in speed-reduction

signalization and also advisory signs that warn vehicles not to stop on the weaving or exit sections.

RCUTs’ design performance was examined by Inman and Haas (2012) for several locations in
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Maryland. The before-and-after analysis showed a reduction in intersection crashes as well as

adjacent segment crashes by 62% and 14%, respectively.

Figure 2. RCUT Example (Olarte et al. 2011)

In Missouri, an unsignalized version of RCUT, called J-turn, is used to substitute several

two-way-stop controlled (TWSC) intersections in high speed rural expressways. The study by

Edara et al. (2013) focused on evaluating 5 J-turn locations by employing a rigorous empirical

Bayes before-and-after evaluation based on field studies, public survey, crash analysis, and traffic

conflict analysis. J-turns were shown to reduce crash frequency for total crashes as well as

disabling and minor injuries. Also, the right-angle crashes due to left turns were completely

eliminated. The average time to collision was also higher at the J-turns compared to the TWSC

sites, indicating greater safety at the J-turn sites. Time to collision is a conflict measure used to

study intersection safety and it is defined as the time it takes for a collision between two vehicles

to occur if the vehicles do not take an evasive action (MacCarley, 2011).

A study by Hummer et al (2010) studied the safety effects of superstreets in arterials in

North Carolina by comparison group analysis and Empirical Bayes method. The study utilized

HSM SPFs which were calibrated to reflect local conditions.  A site is considered to be a full
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superstreet if it reroutes left and through movements from the side street to directional crossovers

on both sides of the main intersection. The results showed that HSM SPFs underestimated crashes

on North Carolina superstreets.

While the operational and safety benefits of U-turns have been explored and reported

through different studies, their safety performance has not been assessed through crash prediction

models, especially state-specific SPFs, for a statewide sample of urban and suburban arterial

boulevards that have MUTs installed. This could be due to the fact that these treatments are not

used in every state and also due to the variety of designs. For urban and suburban arterials, the

SPFs provided in the HSM do not account for median width, presence of MUTs and the combined

effects of these turnarounds with number of lanes, traffic control of the intersections,

driveway/access point density, and other characteristics of the roadway segments. The variables

used and not used in HSM safety predictions are included in Figure 3. This study aims to fill a gap

in the assessment of these treatments at a corridor level for urban and suburban boulevards,

intersections, and lastly at the MUT level. Additionally, aggregate models were estimated to

compare the safety performance of MUTs at the intersection-to-MUT site level. These models

would provide a more direct comparison for the portion of the roadway facility that extends from

the intersections to the MUTs with sites of similar length that have traditional dual left turn lanes.
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Figure 3. Variables Used in HSM Safety Predictions (NCHRP, 2008)

2.1.3 Data Recommendations for SPF Development

The accuracy of an SPF depends mostly on the quality of the data from which it is

developed. Some of the quality issues include inaccurate data, variation in crash reporting

thresholds, and differences in crash reporting methods (AASHTO, 2010). One issue affecting the

analysis of crash frequency and crash severity data is the underreporting of crashes, particularly

those of lower severity levels (e.g., property damage only). In 2008, the Model Minimum Uniform

Crash Criteria (MMUCC) guidelines were developed with funding provided by the National

Highway Traffic Safety Administration (NHTSA) in collaboration with the Governor’s Highway

Safety Association (GHSA), Federal Highway Administration (FHWA), and Federal Motor

Carrier Safety Administration (FMCSA), State DOTs, and law enforcement agencies, as well as

other prominent traffic safety stakeholders. The MMUCC consists of a recommended minimum
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set of data elements for States to include in their crash forms and databases (NHTSA, 2015). This

set includes 110 data elements, 77 of which are to be collected at the scene, 10 data elements to be

derived from the collected data, and 23 data elements to be obtained after linkage to driver history,

injury and roadway inventory data. These elements describe motor vehicle crashes and the

vehicles, persons and environment involved.

As per MMUCC recommendations, all crashes involving death, injury, or property damage

valued at $1,000 or greater should be reported. However, these are only recommendations that

states are required to follow; most states have different dollar-value thresholds for crash reporting.

This causes a portion of property damage only (PDO) crashes to not get reported, and thus not be

included in models. Another issue arises from PDO crashes going unreported by drivers due to

negative incidents on driving records and accompanying increased insurance rates. Given that the

rate of underreporting is generally unknown, ignoring these effects may lead to biased parameter

estimates (Kumara and Chin, 2005; Yamamoto et al. 2008; Ma, 2009). This often prompts models

that include only crashes reported on a KABCO scale, which are often reported on a more

consistent basis (Srinivasan et al. 2008). Differences in crash reporting methods exist on a local

basis as well as statewide. The MMUCC has guidelines for crash reporting by law enforcement.

Despite the level of detail required by so many data fields, law enforcement is ultimately

responsible for the accuracy of the data (Brimley et al. 2012). Data inaccuracies include problems

with inaccurately reported crash data based on location; this translates into excluding crashes from

the model or including wrongly-located crashes. Both of these instances ultimately diminish the

accuracy of the SPF models and result in erroneous crash predictions.

HSM and SafetyAnalyst have somewhat different data requirements due to their different

purposes and different default SPFs.  However, both require extensive data sets of crashes, traffic
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volumes, and roadway geometric characteristics. SafetyAnalyst requires a crash database to be

comprehensive and include information on specific crash location, collision type, severity,

relationship to junction, and types of maneuvers of the involved vehicles. Additionally,

SafetyAnalyst requires that roadway data be split into three categories: segments, intersections,

and ramps.

The HSM requires a sample between 30-50 sites with at least a total of 100 crashes (for the

entire period of the study). The study period depends on the available data, however, to apply the

EB method, at least 2 years of observed crash data are desirable (AASHTO, 2010). Hauer et al.

(2002) outlines the procedures for EB estimation of crash frequency, both abridged and full EB.

The abridged version of the method employs 2-3 years of crash counts and traffic volumes, while

the full EB method utilizes a longer crash and traffic volume history. Roadway data is also

important in safety analysis and includes all the physical features within a road’s right-of-way. The

HSM also requires roadway geometry data such as lane width, shoulder width and type, length,

radius, and superelevation of horizontal curvature, grade, driveway density, and number of binary

variables indicating presence of safety measures and turning lanes (AASHTO, 2010).

Several studies have particularly identified data availability and completeness as hurdles

in meeting the input requirements of the HSM and SafetyAnalyst (Brimley et al. 2012; Hauer, 2002;

Alluri et al, 2014; Lubliner et al. 2014). The results of the nationwide survey, summarized in the

study by Alluri and Ogle (2012), demonstrated that most of the responding states reported issues

with data collection, especially traffic volumes and roadway characteristics, and ability to spatially

locate data. Particularly for intersections, traffic information and roadway geometry information

might be cumbersome to obtain due to state practices which often result in minimal collection and

maintenance of such data. Traffic data is usually available to higher classes of roadways,
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specifically interstates, highways, and state routes, with diminishing availability for local and low

volume roads (Alluri and Ogle, 2012). The cumbersome process of obtaining data often results in

a shorter study period, low sample mean and low sample size, and also omitted variables, all of

which can affect the study results.

In order to include additional variables, a time and effort investment is required to collect

data and merge datasets together. As a result, oftentimes researchers are constrained to exclude a

portion of sample sites with missing data from the analysis. A study examining the state-specific

SPFs for Georgia (Alluri and Ogle, 2012) demonstrated that data quality and availability greatly

affects the statistical significance of SPFs; the significance of Georgia-specific SPFs was lower

than the nationwide SafetyAnalyst SPF significance since data on traffic volume was collected

only from 25% of the road segments. A Florida study identified meeting the data requirements of

the HSM, and to a lesser extent SafetyAnalyst, as being challenging. In particular, many of the

variables for deriving calibration factors presented in the HSM were not available in the state’s

Roadway Characteristics Inventory (Alluri et al. 2014). Additionally, SafetyAnalyst required a

large effort be expended on local data conversion so that agency specific safety performance

functions could be estimated. Researchers attempting to calibrate the HSM to Maryland noted that

the purpose behind thresholds for sites (30-50) and crashes (100 per year) are not necessarily

reflective of the goals of minimizing the error in calibration (Shin et al. 2014) while researchers in

Kansas noted that the crash threshold, in conjunction with scarcity of intersection data, resulted in

a sample that was small to the point that three- and four-leg rural stop-controlled intersections were

considered together (Lubliner et al, 2014).
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2.2 Data Sources and Collection for Disaggregate MUT Safety Performance

Ultimately, the preceding discussion was used to guide the development of the datasets that

were leveraged for the purposes of this study. The data for assessing the safety impacts of MUTs

on urban and suburban arterials, both at an aggregate and disaggregate level, were collected and

assembled as part of two prior projects funded by MDOT, which saw the development of state-

specific SPFs for urban/suburban trunklines (Savolainen et al. 2015, Savolainen et al. 2016). The

data was collected and processed for urban and rural non-freeways, thus filtering was required in

order to omit the rural segments from the dataset. Quality assurance was performed to assure that

all the urban/suburban segments pertained to cities and towns with a threshold population of

50,000 according to HSM recommendations.

2.2.1 Intersection-Level Data

In order to develop a series of SPFs that will provide an accurate prediction of the safety

performance of urban trunkline intersections, it was imperative to develop a robust high-quality

database, which includes traffic crash information, traffic volumes, and roadway geometry.  These

data were obtained from the following sources:

 Michigan State Police Statewide Crash Database;

 MDOT SafetyAnalyst Calibration File;

 Michigan Geographic Data Library (MiGDL) All Roads File;

 MDOT SafetyAnalyst Annual Average Daily Traffic File; and

 MDOT Sufficiency File:
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In addition to the intersection location, traffic volume, and crash data obtained from these

sources, extensive data collection was conducted in order to obtain additional information about

the geometric characteristics of each intersection, including:

 Number of intersection legs

 Type of traffic control

 AADT for major and minor road

 Number of approaches with left-turn

lanes

 Number of approaches with right-turn

lanes

 Presence of lighting

 One-way or two-way traffic

 Intersection sight distance

 Intersection skew angle

 Presence/type of left-turn

phasing

 Pedestrian volumes

 Presence of bus stops

 Presence of on-street

parking

 Presence of MUTs

 Distance of MUTs from

intersections

Due to the cumbersome process of manual data collection, the above attributes were

collected for a random sample of 350 intersections for each intersection type. The random sample

was selected such that each of the seven regions was represented in the sample in order to account

for regional differences and unique attributes during the development of SPFs. These data were

aggregated to develop a comprehensive database of intersections over the five-year study period

from 2008 to 2012.  The final sample was comprised of the following number of locations by site

type:
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 353 three-legged stop-controlled (3ST) intersections;

 350 four-legged stop-controlled (4ST) intersections;

 210 three-legged signalized (3SG) intersections; and

 349 four-legged signalized (4SG) intersections.

The aforementioned sample sizes included intersections that were located on undivided

and divided facilities. However, given that MUTs only exist in divided roadways, the data was

truncated to only included intersections along divided arterials. This limited the sample size of

intersections to 128. Due to differences in the study periods of the two projects, the intersection

data was collected for years 2008-2012 while the segment data was collected for years 2010-2014,

the intersection crash data and other attributes were collected for years 2013-2014. The summary

statistics for the various variables for all intersections and subsequently, for each intersection by

type of traffic control and number of legs, are described in Table 1 through Table 5.

It is not surprising that almost 40 percent of the intersections on divided arterials are located

in the Metro Region. The Grand Region is the second area where almost 35 percent of divided

arterial intersections sample are located. 58 percent of all the intersections have an MUT present

on the Major Road. These MUTs are installed as close as 41 ft and as far as 2599 ft from the center

of the intersection. Traffic volumes also range from just under 5000 veh/day to almost 89,000

veh/day in the signalized intersections.

Table 2 through Table 5 illustrate the descriptive statistics for all the variables in Table 1,

however, provide more disaggregate information on how the 4 types of intersections compare in

traffic volume, roadway geometric characteristics, and the presence of MUTs. The signalized

intersections have a similar percentage of MUT presence, whereas the stop controlled intersections

vary; almost 75 percent of 3-leg stop controlled intersections sampled have MUTs, while that
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percentage drops to only 38 for 4-leg stop controlled intersections. The 4-leg stop controlled

intersections are the smallest sample in the group. This is due to the fact that these types of

intersections are mainly present on rural areas and undivided roadways.

Table 1. Descriptive Statistics for All Intersections (N = 128)
Parameter Average Std. Dev Min Max

Major Road Annual Average Daily Traffic 24894.27 17445.17 4841 88842

Minor Road Annual Average Daily Traffic 5840.38 9418.40 49.50 47464

Major Road Through Lanes 3.94 1.52 2 8

Major Road Left Turn Lane 0.73 0.82 0 2

Major Road Right Turn Lane 0.51 0.78 0 2

Minor Road Through Lanes 1.67 1.57 0 4

Minor Road Left Turn Lane 0.60 0.70 0 2

Minor Road Right Turn Lane 0.28 0.62 0 2

Major Road Posted Speed Limit 45.08 8.82 30 55

Skew Angle 10.75 14.14 0 64.08

Lighting Presence 0.74 0.44 0 1

Right Turn on Red Presence 0.50 0.50 0 1

Major Road Driveway Count 1.36 2.03 0 9

Minor Road Driveway Count 1.96 2.35 0 11

Major Road MUT Presence 0.58 0.49 0 1

Major Road Nearest MUT Distance 506.55 264.29 41 1864

Major Road Farthest MUT Distance 751.54 408.23 279 2599

School Presence within 1/2 mile of Intersection 0.16 0.37 0 1

Superior Region 0.06 0.24 0 1

North Region 0.03 0.17 0 1

Grand Region 0.34 0.47 0 1

Bay Region 0.03 0.17 0 1

Southwest Region 0.08 0.27 0 1

University Region 0.08 0.27 0 1

Metro Region 0.38 0.48 0 1

Total Crash Frequency 7.49 13.63 0 104

Angle Crash Frequency 1.41 2.92 0 26

Head-on Crash Frequency 0.14 0.47 0 4
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Table 2. Descriptive Statistics for 3SG Intersections (N = 27)
Parameter Average Std. Dev Min Max

Major Road Annual Average Daily Traffic 26300.52 16075.48 5998 62094

Minor Road Annual Average Daily Traffic 4534.37 7900.59 49.50 42828

Major Road Through Lanes 3.81 0.77 3 6

Major Road Left Turn Lane 0.70 0.60 0 2

Major Road Right Turn Lane 0.48 0.69 0 2

Minor Road Through Lanes 0.37 0.55 0 2

Minor Road Left Turn Lane 0.85 0.59 0 2

Minor Road Right Turn Lane 0.44 0.63 0 2

Major Road Posted Speed Limit 42.41 7.74 35 55

Skew Angle 7.81 13.04 0 64.08

Lighting Presence 0.78 0.42 0 1

Right Turn on Red Presence 0.96 0.19 0 1

Major Road Driveway Count 1.30 1.63 0 7

Minor Road Driveway Count 1.30 1.65 0 6

Major Road MTA Presence 0.48 0.50 0 1

Major Road Nearest MTA Distance 496.77 144.64 217 740

Major Road Farthest MTA Distance 737.38 264.35 308 1267

School Presence within 1/2 mile of Intersection 0.19 0.39 0 1

Superior Region 0.04 0.19 0 1

North Region 0.15 0.36 0 1

Grand Region 0.15 0.36 0 1

Bay Region 0.00 0.00 0 0

Southwest Region 0.07 0.26 0 1

University Region 0.07 0.26 0 1

Metro Region 0.52 0.50 0 1

Total Crash Frequency 5.20 5.79 0 30

Angle Crash Frequency 0.47 0.82 0 4

Head-on Crash Frequency 0.19 0.60 0 4
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Table 3. Descriptive Statistics for 4SG Intersections (N = 42)
Parameter Average Std. Dev Min Max

Major Road Annual Average Daily Traffic 33499.45 22093.28 7790 88842

Minor Road Annual Average Daily Traffic 13859.13 11248.58 892 47464

Major Road Through Lanes 4.88 1.78 2 8

Major Road Left Turn Lane 1.29 0.91 0 2

Major Road Right Turn Lane 0.76 0.89 0 2

Minor Road Through Lanes 3.36 1.52 2 4

Minor Road Left Turn Lane 0.95 0.79 0 2

Minor Road Right Turn Lane 0.52 0.85 0 2

Major Road Posted Speed Limit 44.05 8.61 30 55

Skew Angle 13.35 15.39 0 52.7

Lighting Presence 0.90 0.29 0 1

Right Turn on Red Presence 0.88 0.32 0 1

Major Road Driveway Count 2.24 2.71 0 9

Minor Road Driveway Count 3.14 2.99 0 11

Major Road MTA Presence 0.55 0.50 0 1

Major Road Nearest MTA Distance 560.26 90.26 357 725

Major Road Farthest MTA Distance 652.09 132.33 483 1084

School Presence within 1/2 mile of Intersection 0.19 0.39 0 1

Superior Region 0.07 0.26 0 1

North Region 0 0 0 0

Grand Region 0.48 0.50 0 1

Bay Region 0.05 0.21 0 1

Southwest Region 0.05 0.21 0 1

University Region 0.05 0.21 0 1

Metro Region 0.31 0.46 0 1

Total Crash Frequency 17.33 19.64 0 104

Angle Crash Frequency 3.63 4.18 0 26

Head-on Crash Frequency 0.27 0.62 0 4
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Table 4. Descriptive Statistics for 3ST Intersections (N = 43)
Parameter Average Std. Dev Min Max

Major Road Annual Average Daily Traffic 18621.40 9120.49 4841 43301

Minor Road Annual Average Daily Traffic 401.42 312.13 49.50 1384.5

Major Road Through Lanes 3.12 1.26 2 8

Major Road Left Turn Lane 0.28 0.45 0 1

Major Road Right Turn Lane 0.12 0.39 0 2

Minor Road Through Lanes 0.81 0.44 0 2

Minor Road Left Turn Lane 0.28 0.45 0 1

Minor Road Right Turn Lane 0.02 0.15 0 1

Major Road Posted Speed Limit 46.16 8.75 30 55

Skew Angle 7.78 11.59 0.01 52.29

Lighting Presence 0.70 0.46 0 1

Right Turn on Red Presence 0.00 0.00 0 0

Major Road Driveway Count 0.91 1.31 0 4

Minor Road Driveway Count 1.51 1.77 0 8

Major Road MTA Presence 0.74 0.44 0 1

Major Road Nearest MTA Distance 465.81 375.68 41 1864

Major Road Farthest MTA Distance 861.53 564.02 279 2599

School Presence within 1/2 mile of Intersection 0.16 0.37 0 1

Superior Region 0.00 0.00 0 0

North Region 0.00 0.00 0 0

Grand Region 0.37 0.48 0 1

Bay Region 0.02 0.15 0 1

Southwest Region 0.05 0.21 0 1

University Region 0.07 0.25 0 1

Metro Region 0.49 0.50 0 1

Total Crash Frequency 1.44 2.78 0 20

Angle Crash Frequency 0.15 0.49 0 4

Head-on Crash Frequency 0.02 0.14 0 1



www.manaraa.com

26

Table 5. Descriptive Statistics for 4ST Intersections (N = 16)
Parameter Average Std. Dev Min Max

Major Road Annual Average Daily Traffic 16791.00 11162.60 6929 50132

Minor Road Annual Average Daily Traffic 1612.22 1693.32 123.50 6741

Major Road Through Lanes 3.88 0.86 2 6

Major Road Left Turn Lane 0.50 0.79 0 2

Major Road Right Turn Lane 0.94 0.90 0 2

Minor Road Through Lanes 1.75 0.43 1 2

Minor Road Left Turn Lane 0.13 0.48 0 2

Minor Road Right Turn Lane 0.06 0.24 0 1

Major Road Posted Speed Limit 49.38 9.16 30 55

Skew Angle 16.89 15.35 0 51

Lighting Presence 0.38 0.48 0 1

Right Turn on Red Presence 0.06 0.24 0 1

Major Road Driveway Count 0.38 1.05 0 4

Minor Road Driveway Count 1.19 1.42 0 5

Major Road MTA Presence 0.38 0.48 0 1

Major Road Nearest MTA Distance 539.17 121.96 300 675

Major Road Farthest MTA Distance 576.83 123.46 330 690

School Presence within 1/2 mile of Intersection 0.06 0.24 0 1

Superior Region 0.25 0.43 0 1

North Region 0.00 0.00 0 0

Grand Region 0.25 0.43 0 1

Bay Region 0.06 0.24 0 1

Southwest Region 0.25 0.43 0 1

University Region 0.19 0.39 0 1

Metro Region 0.00 0.00 0 0

Total Crash Frequency 1.79 1.66 0 7

Angle Crash Frequency 0.50 0.84 0 3

Head-on Crash Frequency 0.01 0.11 0 1

As it can be seen in Table 6, intersections are for the most part located on 4-lane divided

roadways. The stop controlled intersections also experience a much lesser daily traffic volume as

it can be seen from the descriptive statistics.
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Table 6. Sample Size for Each Intersection Type
Type Observations Sites 4D 6D 8D

3SG 135 27 14 7 6

4SG 210 42 28 8 6

3ST 215 43 24 11 8

4ST 80 16 15 1 0

For more details regarding the data sources and the manual data collection for intersections,

the readers can access the full project report (Savolainen et al. 2015). A comprehensive inventory

of MUTs was also developed during the efforts for a companion project focused on urban and

suburban arterial segments (Savolainen et al. 2016). Details for the data collection and processing

for the MUTs are detailed in the following section.

2.2.2 Segment-Level Data

The dataset was assembled from individual data from a number of sources which are either

publicly available or obtained through the Michigan Department of Transportation (MDOT).

Michigan Geographic Data Library (MiGDL) All Roads File was used to obtain the framework

for mapping data from Sufficiency File through linear referencing based on Physical Reference

and Mile Point information. In order to facilitate the use of GIS software for this project, a GIS

shapefile, called allroads_miv13a.shp, was obtained from the Michigan Geographic Data Library

from the Michigan Center for Geographic Information (MCGI) website. The file consists of all the

road segments found statewide. Although the file has a total of 36 attribute fields, the information

utilized involved the Physical Road ID number (PR) and Beginning and End PR mile point for

linear referencing system (BMP and EMP).
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The Sufficiency database is maintained by MDOT and contains roadway data collected

and maintained at a segment level, where each segment has homogeneous traffic and geometric

characteristics. If one or more of these characteristics change, a new homogeneous segment is

introduced in the database. MDOT Sufficiency File provides information with regards to:

 County and MDOT Region

 Route designation and number

 Lane width and number of lanes

 Shoulder type and width

 Median type and width

 Annual Average Daily Traffic (AADT)

 Predominant Posted Speed Limit

 Presence of passing lane or signalized intersection within the segment

 Length of no-passing zone within the segment

Traffic crash information from the Michigan State Police crash database, containing crash

information regarding type and location.

In order to obtain driveway counts and densities, the MDOT database of geocoded

driveway/access points was utilized to map these points on the roadway segments and compute

the desired variables.

Lastly, an extensive manual collection of MUT points along 4D, 6D, and 8D segments was

completed. The information collected included: U-Turns’ physical road and mile point, traffic

control type, and whether the U-Turn was merging or diverging from the segment on which it was

recorded. Information on MUT specific data collection is provided in the following subsection.
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Divided roadways in Michigan have different PR numbers for the opposing directions of

travel. Due to the segmentation of the urban and suburban arterials it was determined that the

divided arterials would be analyzed directionally. This means that for each direction of travel of

the divided road, there are 5 years of observations and data. The decision was made due to two

constraints; the first limitation was encountered due to the segmentation of arterials in a manner

that did not often guarantee the same beginning and end mile point for the opposing direction of

travel segments, and thus hindering the linking of the two segments. Additionally, certain matching

segments might not have been included in the final dataset due to lack of available data for 5

consecutive years or due to presence of construction during one or more of the five years of data.

Previous research (Hauer, 2004) recommends that due to differences in important geometric

features such as grade, number of access points, or curvature, modeling for multilane divided

roadways should be done by direction.

Extensive data review was conducted to ensure that the final datasets included only urban

and suburban segments categorized into their facilities based number of lanes and whether the two

directions of roadway were separated by a painted or physical median. Additional quality

assurance was performed utilizing the historical aerial imagery in Google Earth based on which,

segments that experienced construction during any of the 5 years between 2010 and 2014 were

identified and removed from the dataset.

Table 7 through Table 10 provide summary statistics for all relevant variables among the

divided segment types considered for modeling. Each table presents the minimum, maximum,

mean value, and standard deviation for each variable of interest. As the descriptive statistics show,

the more lanes a facility has, the higher the daily traffic volume. Lane width was fairly consistent

among facility types, ranging from 10 ft to 12 ft with an average width of 11.75 ft. Shoulder widths
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are wider for 4-lane divided arterials, averaging 7.6 ft and 5 ft for the right and left shoulder,

respectively. However, shoulder space tends to be limited for 6-lane and 8-lane divided arterials

due to their location being mainly in highly urban areas where space (right-of-way) is limited. On

average, median width follows the opposite trend; the wider facilities have more room allocated

to separating the directions of travel. Driveway density also is much higher for wider facilities,

which speaks to their urban nature. Over three quarters of the 6-lane divided arterials and 96

percent of the 8-lane divided arterials are located in the Metro Region. On average, the various

types of intersection densities are lowest for 3-leg signalized and 4-leg stop controlled

intersections, whereas 4-leg signalized and 3-leg stop controlled intersections are more frequent,

especially in 6-lane divided facilities. Lastly, 4-lane divided arterials have high density of

uncontrolled, yield-controlled, and stop-controlled MUTs. The other two facility types, 6-lane and

8-lane divided arterials mainly experience stop-controlled and signalized MUTs. Emergency

MUTs are mainly present on 4-lane divided arterials.
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Table 7. Descriptive Statistics for All Divided Segments (N = 281)
Parameter Average Std. Dev. Min Max

AADT 16347.66 10351.79 2752 51337

Segment Length 1.08 0.78 0.12 4.41

Lane Width 11.76 0.48 10 12

Right Shoulder Width 5.41 4.83 0 12

Left Shoulder Width 3.40 3.53 0 10

Median Width 52.58 44.92 2 550

Speed Limit 47.76 7.62 30 55

Driveway Count 11.89 17.59 0 92

Driveway Density 10.27 11.54 0 52.63

School Count 0.49 0.84 0 4

Commercial Vehicle % 4.18 2.78 0.40 13.40

Superior Region 0.09 0.29 0 1

North Region 0.02 0.14 0 1

Grand Region 0.30 0.46 0 1

Bay Region 0.01 0.08 0 1

Southwest Region 0.09 0.29 0 1

University Region 0.10 0.29 0 1

Metro Region 0.39 0.49 0 1

3-leg SG Intersection Density 0.05 0.19 0.00 1.72

4-leg SG Intersection Density 0.15 0.37 0.00 2.87

3-leg ST Intersection Density 0.32 1.20 0.00 11.47

4-leg ST Intersection Density 0.08 0.29 0.00 2.29

No Traffic Control MUT Density 0.32 1.44 0 13.07

Yield Controlled MUT Density 0.58 1.46 0 9.88

Stop Controlled MUT Density 1.65 2.11 0 9.43

Signalized MUT Density 0.49 0.85 0 4.81

Emergency MUT Density 0.11 0.53 0 4.81

Total Crash Frequency 6.59 11.90 0 105.00

Sideswipe Crash Frequency 1.08 2.17 0 21.00

Rear End Crash Frequency 3.37 8.04 0 72.00
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Table 8. Descriptive Statistics for 4-lane Divided Segments (N = 169)
Parameter Average Std. Dev. Min Max

AADT 11138.86 6264.38 2752 32432

Segment Length 1.09 0.80 0.12 4.41

Lane Width 11.79 0.41 11 12

Right Shoulder Width 7.64 3.77 0 12

Left Shoulder Width 5.02 3.19 0 8

Median Width 44.78 45.44 2 550

Speed Limit 50.33 7.37 30 55

Driveway Count 5.95 9.89 0 46

Driveway Density 5.31 7.58 0 52.63

School Count 0.41 0.78 0 3

Commercial Vehicle % 5.06 3.01 0.90 13.40

Superior Region 0.15 0.36 0 1

North Region 0.04 0.19 0 1

Grand Region 0.47 0.50 0 1

Bay Region 0.01 0.11 0 1

Southwest Region 0.14 0.35 0 1

University Region 0.11 0.32 0 1

Metro Region 0.08 0.27 0 1

3-leg SG Intersection Density 0.06 0.21 0.00 1.72

4-leg SG Intersection Density 0.15 0.36 0.00 1.72

3-leg ST Intersection Density 0.13 0.48 0.00 3.44

4-leg ST Intersection Density 0.07 0.28 0.00 2.29

No Traffic Control MUT Density 0.49 1.79 0 13.07

Yield Controlled MUT Density 0.96 1.78 0 9.88

Stop Controlled MUT Density 0.80 1.67 0 9.43

Signalized MUT Density 0.26 0.70 0 4.81

Emergency MUT Density 0.16 0.67 0 4.81

Total Crash Frequency 4.55 7.49 0 90.00

Sideswipe Crash Frequency 0.59 1.30 0 13.00

Rear End Crash Frequency 1.98 4.72 0 63.00
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Table 9. Descriptive Statistics for 6-lane Divided Segments (N = 59)
Parameter Average Std. Dev. Min Max

AADT 21709.89 9476.64 3499 45081

Segment Length 0.98 0.68 0.25 3.01

Lane Width 11.75 0.63 10 12

Right Shoulder Width 2.86 4.74 0 12

Left Shoulder Width 1.36 2.90 0 10

Median Width 61.71 43.51 6 183

Speed Limit 43.12 7.28 30 55

Driveway Count 17.36 20.56 0 87

Driveway Density 15.07 13.14 0 51.87

School Count 0.76 0.98 0 4

Commercial Vehicle % 3.08 2.03 0.40 13.00

Superior Region 0.00 0.00 0 0

North Region 0.00 0.00 0 0

Grand Region 0.07 0.25 0 1

Bay Region 0.00 0.00 0 0

Southwest Region 0.03 0.18 0 1

University Region 0.14 0.34 0 1

Metro Region 0.76 0.43 0 1

3-leg SG Intersection Density 0.06 0.20 0.00 1.15

4-leg SG Intersection Density 0.21 0.46 0.00 2.87

3-leg ST Intersection Density 0.83 2.16 0.00 11.47

4-leg ST Intersection Density 0.14 0.40 0.00 2.29

No Traffic Control MUT Density 0.13 0.74 0 5.13

Yield Controlled MUT Density 0.02 0.15 0 1.17

Stop Controlled MUT Density 2.63 2.13 0 8.30

Signalized MUT Density 0.62 0.78 0 2.72

Emergency MUT Density 0.00 0.00 0 0.00

Total Crash Frequency 7.55 9.60 0 59.00

Sideswipe Crash Frequency 1.40 1.99 0 11.00

Rear End Crash Frequency 4.16 6.09 0 36.00
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Table 10. Descriptive Statistics for 8-lane Divided Segments (N = 53)
Parameter Average Std. Dev. Min Max

AADT 26987.56 10574.33 8165 51337

Segment Length 1.13 0.83 0.20 4.02

Lane Width 11.71 0.49 10 12

Right Shoulder Width 1.13 3.51 0 12

Left Shoulder Width 0.48 1.65 0 8

Median Width 67.29 38.94 30 183

Speed Limit 44.75 4.65 35 55

Driveway Count 24.74 23.47 0 92

Driveway Density 20.75 10.83 0 49.19

School Count 0.45 0.79 0 4

Commercial Vehicle % 2.60 1.13 1.00 6.37

Superior Region 0.00 0.00 0 0

North Region 0.00 0.00 0 0

Grand Region 0.04 0.19 0 1

Bay Region 0.00 0.00 0 0

Southwest Region 0.00 0.00 0 0

University Region 0.00 0.00 0 0

Metro Region 0.96 0.19 0 1

3-leg SG Intersection Density 0.02 0.11 0.00 0.57

4-leg SG Intersection Density 0.10 0.24 0.00 1.15

3-leg ST Intersection Density 0.38 1.17 0.00 6.88

4-leg ST Intersection Density 0.02 0.11 0.00 0.57

No Traffic Control MUT Density 0.00 0.00 0 0.00

Yield Controlled MUT Density 0.00 0.00 0 0.00

Stop Controlled MUT Density 3.24 1.95 0 7.18

Signalized MUT Density 1.06 1.03 0 4.37

Emergency MUT Density 0.05 0.23 0 1.24

Total Crash Frequency 12.05 20.66 0 105.00

Sideswipe Crash Frequency 2.30 3.57 0 21.00

Rear End Crash Frequency 6.91 14.55 0 72.00
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2.2.3 MUT-Level Data

This section details the collection of additional information pertinent to each median U-

turn (MUT). As described previously, MUTs are channelized lanes that divert traffic from one

direction of the roadway to the opposite direction, and they can be uncontrolled, yield controlled,

stop controlled, or signalized.  As a comprehensive database to classify MUTs did not exist, an

extensive review of the divided roadway facilities was conducted as part of the project during

which urban and suburban arterial segment SPFs were developed. Utilizing MDOT PR Finder to

identify the segments and Google Earth to collect aerial and street view information, for each urban

and suburban segment represented by a PR, BMP, and EMP, the mile point information of each

MUT was collected as illustrated in Figure 4.

Figure 4. Screenshot of MDOT PR Finder
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Additionally, MUTs were classified based on whether they diverged or merged traffic

from/into the segment of interest, traffic control type, and whether the MUT merged traffic simply

into the opposite direction of the roadway, a driveway, or another roadway, intersecting the

segment of interest. Figure 5 illustrates diverging and merging MUTs:

Figure 5. Screenshot of an MUT on a 4D Segment

Emergency MUTs were also recorded when they were identified; these were somewhat

difficult to identify when signs were not present indicating the MUT was for use by authorized

vehicles only. Figure 6 provides an example of emergency MUTs while Table 11 provides a key

outlining the classification of MUTs based on these characteristics.
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Figure 6. Emergency MUT Example on a 4D Segment

Table 11. Classification of MUTs
Code Description of MUT Type and Traffic Control

O No traffic control; merging traffic only in the opposite direction of roadway
Y Yield control; merging traffic only in the opposite direction of roadway
0 Stop control; merging traffic only in the opposite direction of roadway
1 Traffic signal; merging traffic only in the opposite direction of roadway
9 Diverging (from the segment of interest)
E Emergency
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One of the primary objectives of this study was to develop an MUT-specific crash frequency model

aside from the intersection and segment crash frequency and crash type models. Therefore, data

was collected for MUTs, such as AADT specific to the MUT segment, segment type and AADT

on which the MUT was located, traffic control of the MUT, and whether the MUT was directional

or bidirectional. The crashes for the MUT were selected via a field on the crash data which

specifies intersection crashes and within a radius of 0.04 miles from the MUT center.

Table 12. Descriptive Statistics for MUTs (N = 637)
Parameter Average Std. Dev Min Max

Segment Annual Average Daily Traffic 45267.878 22155.803 7036 190838

MUT Annual Average Daily Traffic 1173.553 2738.023 90 28027

Signalized MUT 0.328 0.470 0 1

Stop Controlled MUT 0.527 0.499 0 1

Yield Controlled MUT 0.141 0.348 0 1

Uncontrolled MUT 0.003 0.056 0 1

Two-way MUT 0.020 0.141 0 1

One-way MUT 0.980 0.141 0 1

4-lane Divided Segment 0.292 0.455 0 1

6-lane Divided Segment 0.237 0.425 0 1

8-lane Divided Segment 0.471 0.499 0 1

Crash Frequency 3.85 4.603 0 37

Table 12 provides detailed descriptive statistics for MUT variables. On average, the MUT-specific

traffic volumes were just under 1200 veh/day, with higher volumes on those MUTs located on 6-

lane and 8-lane divided arterials. The majority of the MUTs were directional; over half of them

were stop controlled, one-third of MUTs were signalized, and 14 percent were yield-controlled.
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2.3 Data Sources and Data Collection for Aggregate-Level MUT Analysis

In order to assess the safety performance at a more aggregate level (i.e. at the portion of

the roadway facility directly adjacent to the intersection including the MUTs), additional data

was collected and processed.

Throughout the urban areas, these MUTs have been installed not only at signalized

intersections, but also along boulevards and they often serve more than one intersection. This

means the same MUT could serve one signalized and many stop-controlled (3-leg stop

controlled) intersections which are widespread along urban boulevards.

Figure 7. MUT Installations Along a Boulevard

Figure 7 illustrates MUT installations along a boulevard. It can be seen that several of these

MUTs do not serve a specific intersection, rather the various developments located along the

boulevard.

First, a representative sample size of traditional and MUT-equipped intersections was

chosen from the intersection data described in subsection 2.2.1. The selection of these sites was

done randomly as well as to assure that these sites represent the traditional installation of MUTs

and the sample size included 32 sites.
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As mentioned previously, a site would include an intersection along with the portion of

segment extending from the intersection to the MUTs that serve that intersection, including the

MUT lanes. The data was processed in ArcGIS, which allowed for the visualization of the data

as well as the spatial selection of crash data for all the sites. Once the sites were randomly

selected, boxes were drawn to incorporate the intersection and the portion of the segment

extending to the MUTs. The lengths of the boxes were measured and recorded and an average

value computed. For a direct comparison between sites that are served by MUTs and similar

traditional (i.e., non-MUT) sites, the average length of MUT-equipped sites/boxes was used to

draw boxes around the traditional sites. Figure 8 and Figure 9 illustrate through aerial imagery

examples of site types.

Figure 8. Aerial Image of an MUT-Equipped Site
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Figure 9. Aerial Image of a Left-Turn Site

The final dataset included an entry for each site characteristics for each year of study

(2010-2014). The intersection information was already available and was not processed any

further. The descriptive statistics of the sampled intersections are illustrated in Table 13 for

MUT-equipped intersections and Table 14 for traditional left turn intersections.
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Table 13. Descriptive Statistics for Intersections with MUTs (N=23)
Parameter Average St. Dev Min Max

Length (ft) 1980.4 361.4 1305.3 2817.5

Length (mi) 0.375 0.068 0.247 0.534

Major Road Annual Average Daily Traffic 39736.5 22188.1 9682 88842

Minor Road Annual Average Daily Traffic 10595.6 11128.4 446 38542

Skew Angle 10.091 11.742 0 38.18

Presence of Lighting 0.783 0.414 0 1

Presence of Right Turn on Red 0.87 0.338 0 1

Major Road Posted Speed Limit 48.043 7.366 30 55

3-Leg Signalized Intersection 0.217 0.414 0 1

4-Leg Signalized Intersection 0.696 0.462 0 1

4-Leg Stop Controlled Intersection 0.087 0.283 0 1

Head-on Crash Frequency 0.122 0.378 0 2
Angle Crash Frequency 3.609 5.143 0 26
Rear End Crash Frequency 10.296 13.365 0 60
Sideswipe Same Side Crash Frequency 2.843 5.396 0 28
Total Vehicular Crash Frequency 18.174 23.419 0 104

Table 14. Descriptive Statistics for Control Intersections without MUTs (N=9)
Parameter Average St. Dev Min Max

Length (ft) 1911.63 87.32 1752.5 1990.8

Length (mi) 0.362 0.017 0.332 0.377

Major Road Annual Average Daily Traffic 18587.89 8061.6 7961 31402

Minor Road Annual Average Daily Traffic 6120.11 3956.83 726 10879

Skew Angle 13.7 14.97 0.01 44.24

Presence of Lighting 0.67 0.48 0 1

Presence of Right Turn on Red 0.78 0.42 0 1

Major Road Posted Speed Limit 49.44 8.06 35 55

3-Leg Signalized Intersection 0.222 0.42 0 1

4-Leg Signalized Intersection 0.444 0.503 0 1

4-Leg Stop Controlled Intersection 0.333 0.477 0 1

Head-on Crash Frequency 0.489 0.895 0 4
Angle Crash Frequency 2.244 2.356 0 9
Rear End Crash Frequency 5.578 6.576 0 23
Sideswipe Same Side Crash Frequency 0.644 0.933 0 3
Total Vehicular Crash Frequency 10.000 9.038 0 30
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As seen on Table 13 and Table 14, the average traffic for both major and minor roads was

higher on sites with MUTs than similar sites where left-turning vehicles are served directly at the

primary intersection. This is reflective of the small sample size of the traditional left turn sites

stemming from the 128 intersections with detailed information available on divided arterials. The

skew angle, presence of lighting, and presence of right turn on red are comparable among the

MUT sites and the traditional sites.

There is an adequate distribution of sites for signalized intersections, however, there are

very few 4ST sites that have MUTs present. This was discussed in the first part of the paper as

being one of the limitations of this study; 4ST intersections are not very common in urban and

suburban areas, especially on divided arterials.

In terms of various crash type frequencies, as expected, the MUT sites exhibit less head-

on/head-on left turn crashes and significantly more sideswipe and rear end crashes. The slightly

higher angle crash frequency on MUT sites could be attributed to the higher traffic volumes for

these sites. All crash types and total vehicular crashes exhibit overdispersion, as evident in the

descriptive statistics present in Table 13 and Table 14.

The segment information, on the other hand, demanded some processing due to the fact

that the first part of the study examined divided arterials directionally to assess the safety

performance of MUTs. For the second part of the study, the segment portion of each site was

represented for the entire arterial by combining direction characteristics. For most of the sites,

there were only two segments with homogeneous characteristics included inside each box, one

segment per direction of travel. However, other sites included more than two segments, therefore,

data aggregation through averaging of variables was first performed. Afterwards, the two
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directions of travel were combined by adding the directional traffic volumes, number of lanes,

access points along each site, and averaging other variables such as shoulder widths.

Table 15 display the descriptive statistics for the short segments that run from immediately

upstream to immediately downstream of each intersection, inclusive of the adjacent MUTs. Table

16 provides similar data for control sites with traditional left-turn treatments. Collectively, these

tables show that all of the traditional (i.e., control) sites and more than half of the MUT sites are

located on 4-lane divided arterials. This speaks to the nature of MUT installations on 6-lane divided

and 8-lane divided arterials; as previously mentioned, in the most developed urban areas, these

MUTs are not installed to serve specifically one intersections, but rather at a boulevard level,

serving multiple intersections and driveways. Since the selection of MUT sites was done to isolate

mostly those sites where each MUT pair serves primarily one major intersection, it can be seen

why the majority of MUT sites are located on 4-lane divided arterials.

The sites have comparable lane and shoulder widths, however, MUT sites have a wider

range of median widths. This is reflective of the fact that MUTs were primarily installed in wide

median boulevards. Similar statistics are also seen for commercial vehicle percentage and school

presence along the sites. In terms of access points, the MUT sites exhibit larger counts for both

residential and commercial driveways, potentially introducing more conflict points along a

segment. This could also reflect the presence of MUTs to serve various developments along a

boulevard or vice versa, that development has grown on boulevards that allow more access to

businesses. This can also be reflective of the slightly higher angle crash frequency exhibited by

the segment portion of MUT sites. Additionally, some of these MUTs are directly across from
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driveways or stop controlled intersections, which may introduce the potential for conflict points

and thus certain types of crashes.

Table 15. Descriptive Statistics for Segments with MUTs (N=23)
Parameter Average St. Dev Min Max

4-lanes Divided Segments 0.522 0.502 0 1

6-lanes Divided Segments 0.261 0.441 0 1

8-lanes Divided Segments 0.174 0.381 0 1

Lane Width 11.739 0.488 10 12

Median Width 76.087 53.388 26 183

Right Shoulder Width 6.826 4.726 0 12

Left Shoulder Width 2.652 3.157 0 8

School Presence 0.304 0.462 0 1

Commercial Vehicle Percent 3.95 2.683 1.213 11.766

Count of Residential Driveways 2.522 5.9 0 24

Count of Commercial Driveways 8.783 12.548 0 42
Head-on Crash Frequency 0.035 0.184 0 1
Angle Crash Frequency 0.357 0.797 0 5
Rear End Crash Frequency 3.313 5.983 0 34
Sideswipe Same Side Crash Frequency 1.009 1.871 0 11
Total Vehicular Crash Frequency 5.687 8.515 0 47

Table 16. Descriptive Statistics for Control Segments without MUTs (N=9)
Parameter Average St. Dev Min Max

4-lanes Divided Segments 0.956 0.208 0 1

6-lanes Divided Segments 0 0 0 0

8-lanes Divided Segments 0 0 0 0

Lane Width 11.611 0.463 11 12

Median Width 25.333 8.752 13 36

Right Shoulder Width 7.333 4.045 0 10

Left Shoulder Width 5.667 3.438 0 8

School Presence 0.333 0.477 0 1

Commercial Vehicle Percent 6.408 3.299 1 12.555

Count of Residential Driveways 0 0 0 0

Count of Commercial Driveways 0.889 1.933 0 6

Head-on Crash Frequency 0 0 0 0
Angle Crash Frequency 0.289 0.757 0 4
Rear End Crash Frequency 2.222 3.704 0 19
Sideswipe Same Side Crash Frequency 0.867 1.854 0 10
Total Vehicular Crash Frequency 4.333 5.924 0 33
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Some additional information was manually collected for MUTs, including number of lanes,

the presence of truck loons, which provide additional turning space for large vehicles such as

trucks, and the presence of a driveway or intersection across the road from the MUT opening. The

summary of such information is included in Table 17. The majority of MUT pairs consisted of

signalized, stop controlled, or yield controlled MUTs, with some mixed pairs in terms of traffic

control. Almost three quarters of the MUTs were one lane each and 17 percent of MUTs had two

lanes each. The majority of MUTs were across the road from a driveway or intersections, which

was mentioned previously as a factor for introduction of potential conflict points at these locations.

However, this is a challenging aspect of the sample selection given that these MUTs are, in fact,

located in developed areas, where access is given to subdivisions and also businesses along the

boulevards. Just over a quarter of these MUTs had truck loons present for each of the MUTs in the

pair.

Table 17. Descriptive Statistics for Aggregated MUTs (N=23)
Parameters for MUT Pair Average St. Dev Min Max

Both Signalized 0.217 0.414 0 1

Both Stop Controlled 0.391 0.490 0 1

Both Yield Controlled 0.174 0.381 0 1

Signalized/Stop Controlled 0.130 0.338 0 1

Signalized/Yield Controlled 0.087 0.283 0 1

One Lane Each 0.739 0.441 0 1

Two Lane/One Lane 0.087 0.283 0 1

Two Lanes Each 0.174 0.381 0 1

Driveway Across from MUT Opening 0.652 0.701 0 1

Intersection Across from MUT Opening 0.174 0.381 0 1

Presence of Loons 0.261 0.441 0 1

Head-on Crash Frequency 0.009 0.093 0 1
Angle Crash Frequency 0.348 0.928 0 6
Rear End Crash Frequency 1.348 3.763 0 33
Sideswipe Same Side Crash Frequency 0.417 1.017 0 6
Total Vehicular Crash Frequency 2.452 5.694 0 42
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2.4 Statistical Methods

Once the database was assembled, the safety performance functions were estimated at a

facility level, for intersections, segments, and MUTs, and at the site level. Subsequently, the data

was used to predict a series of regression models to examine how the annual number of crashes

for a given intersection and segment, changes as a function of traffic volume, operational, and

geometric characteristics of the roadway, and most importantly, the presence of MUTs or the

density of MUTs. Several models were estimated for total vehicular crash frequency by crash type

for head-on crash frequency, angle crash frequency, sideswipe crash frequency, and rear-end crash

frequency.

One of the common frameworks for crash data modeling is the Poisson model. The

probability of a segment or intersection i experiencing yi crashes during a specific period, in the

structural form shown in Equation 1.

( ) = ( )! (Eq. 1)

where λi is the Poisson parameter for segment i, which is equal to the segment’s expected number

of crashes during the analysis period, E[yi]. Poisson regression models are estimated by specifying

the Poisson parameter λi as a function of explanatory variables. The most common functional form

for the Poisson parameter is shown in Equation 2.

λi = EXP(βXi) (Eq. 2)

where Xi is a vector of explanatory variables and β is a vector of estimable parameters. However,

the crash data is often susceptible to dispersion, where the variance is larger or smaller than the

sample mean. To accommodate for the overdispersion of crash data, a negative binomial regression

model was initially utilized. The negative binomial model is derived by rewriting this Poisson

parameter for each segment i as shown in Equation 3.
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λi = EXP(βXi + εi) (Eq. 3)

where EXP(εi) is a gamma-distributed error term with mean 1 and variance α. The addition of this

term allows the variance to differ from the mean as shown in Equation 4.

VAR[yi] = E[yi] + αE[yi]2 (Eq. 4)

The α term is also known as the over-dispersion parameter, which is reflective of the

additional variation in crash counts beyond the Poisson model (where α is assumed to equal zero).

For both intersections and segments, there is strong evidence of overdispersion which is

reflected by the summary statistics in Table 1 through Table 5 for intersection crashes and Table

8 through Table 12 for MUT and segment crashes.

While the negative binomial framework accommodates overdispersion of crash data,

another methodological issue that arises when using multiple years of data for the study sites is

temporal correlation. To account for temporal correlation among the observations for each site, a

random effects framework was utilized instead. This model allows for the constant term to vary

across locations (study sites) as shown in Equation 5.= + (Eq. 5)

where the i subscript indexes a specific road segment and is a random error term that is

assumed to follow a specific distribution. The error term is assumed to follow a normal

distribution, with a mean of zero and variance to be estimated as a model parameter, which is

allowed to vary across intersections, road segments and MUTs.
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2.5 Results and Discussion

2.5.1 Disaggregate-Level Analysis of MUTs

The data for this analysis was structured in three parts: an intersection crash frequency and

type data set, a segment crash frequency and type data set, and an MUT-specific data set.  These

data sets were subsets of the data used for the Michigan SPF Intersection and Segment projects. In

other words, only the divided roadway segments (4D, 6D, and 8D) were utilized considering

MUTs only exist in divided roadways. This means that from the group of randomly selected

intersections which were reviewed in detail as part of the Intersection SPF project, only the ones

which were located on divided roadway segments were identified and utilized.  Due to differences

in the study periods of the two projects, the intersection data was collected for years 2008-2012

while the segment data was collected for years 2010-2014, the intersection crash data and other

attributes were collected for years 2013-2014.

Each of the intersections was classified into one of four types based on number of legs and

traffic control. Table 6 outlines the breakdown of the 128 intersections by type (number of legs

and traffic control) and on which types of segments these intersections were located.

Table 18 describes the crash frequency and crash type (angle crashes and head-on/head-on

left turn crashes) for each of these intersection types.

Table 18. Crash Type Counts and Total Vehicular Crashes by Intersection Type
Type Observations Sites Angle Crash Head-On Crash Total Vehicle Crash

3SG 135 27 64 25 702

4SG 210 42 763 57 3640

3ST 215 43 33 4 310

4ST 80 16 40 1 143
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As it can be observed on Table 18, the majority of angle crashes occur at signalized

intersections, especially 4-leg intersections. Similarly, the head-on crash frequency is highest at

these locations. The same trend can also be seen for total vehicular crashes. This could be explained

by the fact that the urban and suburban signalized intersections carry a much larger traffic volume

on a daily basis, as volume is one of the most critical exposure factors.

So far, a series of random effect models have been estimated examining the intersection

total vehicular crash frequency, angle crash frequency, and head-on crash frequency. The random

effects framework accommodates the temporal correlation caused by the repeated observations for

each site over 5 study years by allowing the intercept term to vary across locations.

Table 19 provides the intersection model results of the total crash frequency. As expected,

the major road and minor road traffic volumes play a significant role in crash frequency. The

relationship of major road AADT and crash frequency is such that for every unit increase in traffic,

one would expect 0.86 more crashes. 3-leg signalized intersections and stop-controlled

intersections are associated with fewer crashes as compared to 4-leg signalized intersections. This

can be attributed to less traffic for both intersection types, and less conflict points when comparing

the 3SG with the 4SG intersections. The number of through lanes is associated with higher crash

frequency, which seems intuitive given that the more lanes a facility has, the more traffic is usually

generated. Interestingly, the presence of a right turn lane is also associated with higher crash

frequency. This can be explained by the added conflict points when another movement is allowed

at an intersection. Parking on the major road is associated with a lower crash frequency. This could

be due to several reasons: primarily, parking is installed in the lower speed arterials, where traffic

volumes are not as high, thus not impacting the flow of traffic. Additionally, the presence of parked

vehicles could deter drivers from careless driving, especially given the lack of shoulder/recovery
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space is not available when parking is present, which in turn can reduce the room for recovery

when drivers swerve. Lastly, the prohibition of the left turn movement at an intersection is

associated with lower crash frequency, as is the presence of an MUT, albeit at a higher level.

Table 19. Intersection Total Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -8.7741 1.3688 -6.41 <0.0001

Log of Major Road Annual Average Daily Traffic 0.8675 0.1422 6.1 <0.0001

Log of Minor Road Annual Average Daily Traffic 0.2033 0.0662 3.07 0.0021

3-Leg Signalized Intersection -0.5393 0.2297 -2.35 0.0189

Stop Controlled Intersection -0.821 0.2824 -2.91 0.0036

Prohibited Left Turn -0.4562 0.2451 -1.86 0.0627

Presence of MUT on Major Road -0.7976 0.327 -2.44 0.0147

Major Road Through Lanes 0.1044 0.0605 1.73 0.0844

Major Road Right Turn Lane Presence 0.5239 0.1685 3.11 0.0019

Major Road Parking Presence -1.3725 0.5948 -2.31 0.021

Interaction: Prohibited Left Turn & Presence of MUT 0.513 0.3903 1.31 0.1887

Table 20 provides the intersection model results of the angle crash frequency. The traffic

volumes have a lesser effect on angle crashes as compared to total vehicular crashes. However, as

it can be seen, the 3SG intersections are associated with much lower angle crash frequency. This

is highly likely due to the only two possibilities for left turn movements at a 3SG facility as

compared to the 4SG facility, which usually has left turn movements from both legs of each of the

intersecting roadways, coupled with higher volumes. Both prohibition of left turns and the

presence of MUTs are associated with fewer angle crashes, at a similar effect. Similar effects are

seen for through lanes and presence of right turn lanes as in the model for total crash frequency.

Additionally, regional indicators were added in this model to ascertain how angle crashes vary by

region. It can be seen that as compared to the Metro Region, all the rest of the regions are associated

with higher angle crash frequency.
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Table 20. Intersection Angle Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -9.9855 1.8686 -5.34 <0.0001

Log of Major Road Annual Average Daily Traffic 0.6632 0.1818 3.65 0.00026

Log of Minor Road Annual Average Daily Traffic 0.3055 0.0814 3.75 0.00017

3-Leg Signalized Intersection -1.4953 0.2842 -5.26 <0.0001

Stop Controlled Intersection -0.8884 0.2973 -2.99 0.0028

Prohibited Left Turn -0.628 0.2616 -2.4 0.01636

Presence of MUT on Major Road -0.751 0.3073 -2.44 0.01453

Major Road Through Lanes 0.1807 0.0581 3.11 0.00189

Major Road Right Turn Lane Presence 0.4354 0.1854 2.35 0.01883

Superior Region 1.255 0.4151 3.02 0.0025

North Region 1.6018 0.4495 3.56 0.00037

Grand Region 0.486 0.2284 2.13 0.03338

Bay Region* 0.7678 0.533 1.44 0.14971

Southwest Region 1.1901 0.3788 3.14 0.00168

University Region 0.75 0.3631 2.07 0.03887

Interaction: Prohibited Left Turn & Presence of MUT 1.0381 0.3801 2.73 0.00632

*Not significant at the 95% confidence interval

Table 21 provides the intersection model results of the head-on crash frequency. Head on

crash frequency is only affected by traffic volumes on the major road, the prohibition of left turns,

and the presence of MUTs. The effects are similar to the previous two models, aside from the

magnitude of the effects being much higher. Also, the fact that head-on crashes are not as frequent

as angle crashes makes the model more difficult to specify.

Table 21. Intersection Head-On Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -10.35 2.243 -4.61 <0.0001

Log of Major Road Annual Average Daily Traffic 0.948 0.228 4.16 <0.0001

Prohibited Left Turn -2.4 0.555 -4.33 <0.0001

Presence of MUT on Major Road -1.342 0.497 -2.7 0.007

Interaction: Prohibited Left Turn & Presence of MUT 1.575 0.754 2.09 0.037
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Due to the larger traffic volume they carry, the 6D and 8D roadways experience more rear-

end and sideswipe crashes per observation (note that the sample size for these facilities is one-third

of the sample size of 4D facilities). Similarly, this can also be observed for total vehicular crashes

in Table 22.

Table 22. Crash Type Counts Total Vehicular Crashes by Segment Type
Type Observations Sites Rear End Crash Sideswipe Same Side Crash Total Vehicle Crash

4D 845 169 1676 501 3842

6D 295 59 1228 413 2226

8D 265 53 1830 610 3194

As for the intersections, three models were estimated for the segment data, a total crash

frequency model, a rear end crash frequency model, and a sideswipe/same side crash frequency

model. The results have been presented in Table 23 through Table 25.

Table 23 provides the segment total crash frequency model results. Total crashes are

positively associated with traffic volume, as expected. Posted speed limits also have a positive

effect on crashes, however, posted speed limit is associated with functional class. The higher speed

arterials are also the ones that carry more volume, thus one would expect more crashes to occur on

these facilities. Commercial driveway density also is associated with higher crash frequency.

Commercial development is usually denser in urban areas and can be the cause of higher access

points along these routes. This in turn leads to higher volumes, and more conflict points. On the

other hand, industrial driveways are located in less busy areas, away from commercial or

residential development, thus being associated with less crashes. The higher densities of signalized

intersections and MUTs is related to higher segment crashes as well. Lastly, the presence of

schools on the segments has a decreasing effect on crashes. This could possibly be explained by

lower speed limits or driver behavior.
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Table 23. Segment Total Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -8.5488 0.75478 -11.33 <0.0001

Log of Annual Average Daily Traffic 0.89039 0.07058 12.61 <0.0001

Posted Speed Limit 0.02243 0.00611 3.67 0.00024

Commercial Driveway Density 0.01535 0.00839 1.83 0.06711

Industrial Driveway Density -0.08598 0.02881 -2.98 0.00284

Signalized Intersection Density 0.07477 0.03282 2.28 0.0227

MUT Density 0.05056 0.01017 4.97 <0.0001

School Presence -0.20237 0.09828 -2.06 0.03948

The model for same side sideswipe crash frequency, presented in Table 24, illustrates

mostly the same relationships between these crashes and the variables of traffic volume, posted

speed limit, signalized intersection density, MUT density, and school presence. Additionally, left

shoulder width has a decreasing effect on crashes; as the shoulders get wider, drivers are provided

with more room to maneuver and correct for driving mistakes. Similar effects were observed with

the rear end crash frequency model in Table 25; additionally, some regional effects were found for

the Superior, Southwest, and University regions, where all three exhibited a lower rear end crash

frequency compared to the Metro region.

Table 24. Segment Sideswipe Same Side Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -11.8623 1.0996 -10.79 <0.0001

Log of Annual Average Daily Traffic 1.0648 0.1085 9.82 <0.0001

Left Shoulder Width -0.0917 0.0241 -3.8 0.00015

Posted Speed Limit 0.0236 0.01 2.36 0.01829

Signalized Intersection Density 0.1002 0.0401 2.5 0.01253

MUT Density 0.0464 0.0136 3.41 0.00064

School Presence -0.2353 0.1234 -1.91 0.05665
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Table 25. Segment Rear End Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -12.0166 1.2512 -9.6 <0.0001

Log of Annual Average Daily Traffic 1.2701 0.1255 10.12 <0.0001

Left Shoulder Width -0.0177 0.0208 -0.85 0.3934

MUT Density 0.0395 0.0151 2.61 0.009

Superior Region -0.7633 0.3184 -2.4 0.0165

Southwest Region -0.8943 0.305 -2.93 0.0034

University Region -0.5025 0.262 -1.92 0.0551

The last model estimated was an MUT-specific model for total vehicular crash frequency

illustrated in Table 26. This was done to examine the manner in which traffic volumes for both the

MUT and the segment on which it is located, as well as MUT type of traffic control and the

segment number of lanes, affect crash frequency at the MUT. As previously mentioned, the crashes

were queried such that they were labeled as intersection crashes and within a 0.04-mile radius to

ensure that segment crashes were not included and as such, over represented. Traffic volumes for

the MUT display similar effects, in terms of exposure on the major and minor roads, as would be

seen in the case of an intersection. This is not surprising given that MUTs act as a “hybrid”

intersection where only turning movements are allowed, directional or bidirectional. Higher

crashes can be expected at stop controlled and signalized MUTs, however, this is also reasonable

given the higher traffic volumes these MUTs carry on a daily basis.

Table 26. MUT Total Vehicular Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -9.416 0.895 -10.520 <0.001

Log of Segment Annual Average Daily Traffic 0.714 0.088 8.140 <0.001

Log of MUT Annual Average Daily Traffic 0.261 0.026 10.180 <0.001

Signalized MUT 1.297 0.146 8.900 <0.001

Stop-controlled MUT 0.549 0.136 4.040 <0.001
Overdispersion Parameter 0.066 0.011

Variance of Random Effects, σ2 0.740
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2.5.2 Aggregate-Level Analysis of MUTs

Several models were estimated for total crash frequency and the four types of crash type

frequencies; angle crashes, rear-end crashes, and sideswipe crashes. The significantly small sample

size and sample mean of head-on crashes did not allow for the estimation of a head-on crash

frequency model.

Table 27 presents the model results for total crash frequency for MUT-equipped sites and

left-turn sites. As expected, there is a positive correlation between both major and minor street

traffic volume and the frequency of traffic crashes.

Table 27. Total Vehicular Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -5.428 1.275 -4.260 0.004

Log of Major Road Annual Average Daily Traffic 0.627 0.131 4.800 <0.001

Log of Minor Road Annual Average Daily Traffic 0.346 0.058 5.930 <0.001

Presence of MUTs -0.151 0.166 -0.910 0.360

Unsignalized Intersection -0.254 0.239 -1.060 0.290

Overdispersion Parameter 0.141 0.027

Variance of Random Effects, σ2 0.087

The presence of median U-turns was associated with lower crash frequency. However, this

result was not statistically significant (p-value = 0.36). In spite of this fact, this initial evidence is

important because it indicates a potential net-benefit to roadway safety, in addition to the

operational advantages such as more efficient signal timing. Further analysis of this finding is

examined in Table 28 in terms of a more detailed MUT-type model and type-specific crash

frequency models.

Ideally, a larger sample would be utilized to facilitate the development of separate models

for signalized and unsignalized intersections, however, that was not possible for this analysis. As

one would expect, fewer crashes occur at unsignalized intersections in comparison to signalized
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intersections, due primarily to the fact that signals are utilized at locations with higher volumes

and higher frequency of conflicting maneuvers. Due to the lower traffic volume, particularly of

the minor street, associated with unsignalized intersections, there are fewer conflicts and

ultimately, fewer crashes.

While the prior results suggest a potential safety benefit associated with median U-turns, it

is important to acknowledge that not every median U-turn is similarly designed. In fact, locations

where the median U-turns are signalized may be functioning as a series of intersection, with some

of the intersection-related crashes being shifted toward the upstream or downstream MUT. Table

28 presents a model that allows for an investigation of such differences.

Table 28. Detailed Total Vehicular Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -3.292 1.437 -2.290 0.022

Log of Major Road Annual Average Daily Traffic 0.525 0.138 3.820 0.000

Log of Minor Road Annual Average Daily Traffic 0.221 0.062 3.570 0.000

Density of Three-leg Stop Controlled Intersections -0.020 0.009 -2.270 0.024

Signalized Intersection w/ Signalized MUTs 0.150 0.213 0.700 0.482
Signalized Intersection w/ 1 Signalized MUT and 1
Unsignalized MUT

0.087 0.200 0.440 0.662

Signalized Intersection w/ Unsignalized MUTs -0.279 0.176 -1.580 0.114

Unsignalized Intersection w/ Unsignalized MUTs -0.718 0.315 -2.280 0.022

Unsignalized Intersection w/o MUTs -0.538 0.271 -1.990 0.047

Eight Lanes 0.408 0.235 1.740 0.082

Overdispersion Parameter 0.141 0.027

Variance of Random Effects, σ2 0.052

This model was estimated such that all combinations of intersection control and MUT

presence are being compared to signalized intersections without MUTs. Locations where the

primary intersection was signalized, and where one or both of the MUTs were also signalized,

were associated with a higher crash frequency, though this effect was not statistically significant.

It is possible that the increased crash frequency associated with signalized MUTs is due to the fact
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that these sites tended to experience higher volumes, particularly for left-turning traffic. As a

consequence, it is somewhat challenging to identify comparable control (i.e., non-MUT) locations.

It is also worth noting that this analysis utilized a relatively small sample size for this level of

fidelity among the site types and that a larger sample could potentially have an impact on the

observed safety effect. Additionally, the utilization of turning movement specific volume

information could potentially provide additional insight into this observation.

For locations with unsignalized MUTs, a safety benefit was observed for both signalized

and unsignalized intersections. Unsignalized MUTs are utilized at locations with lower turning

volumes that signalized MUTs, so ultimately, it makes sense that they would have fewer crashes

than signalized MUTs. This again brings up the potential usefulness of turning-movement specific

volume information, particularly for the main intersection associated with each site.

Eight-lane divided roads were shown to be associated with higher crash frequency. This is

again due to the number conflicting movements that likely occur at these locations due to lane

change maneuvers.

Beyond simply investigating the effect of MUTs on total crashes, it is also important to

consider their effect on specific crash types, as some crash types are inherently more severe than

others. To this end, Table 29 presents a model that was estimated to examine the effect of MUTs

on angle crashes.

Table 29. Angle Crash Frequency Model Results
Parameter Estimate Std. Error z-Value p-Value

Intercept -6.219 1.588 -3.920 <0.001

Log of Major Road Annual Average Daily Traffic 0.490 0.179 2.740 0.006

Log of Minor Road Annual Average Daily Traffic 0.387 0.098 3.970 <0.001

Signalized Intersection with Unsignalized MUT -0.521 0.240 -2.170 0.030

Overdispersion Parameter 0.002 0.000

Variance of Random Effects, σ2 0.236
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Overall, it was observed that the presence of MUTs was associated with lower angle crash

frequency, however, this was only shown for unsignalized MUTs at signalized intersections. This

result is intuitive, as angle crashes largely occur when left-turning vehicles enter the path of

oncoming traffic, an event that’s likelihood is reduced when left turns are prohibited due to the

MUTs.  It is quite likely that a larger sample would further highlight this finding. The other type

of intersection-MUT traffic control combinations were not significant and thus were not included

in the model.

Table 30 presents the results for sideswipe crash frequency model. The combination of

signalized intersections with signalized MUTs is shown to be associated with higher sideswipe

crash frequency. Additionally, the percentage of commercial vehicles is associated with less

sideswipe crashes. This could reflect certain driver behavior of potentially maintaining lane

position and less lane switching.

Table 30. Sideswipe Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance

Intercept -4.287 2.335 -1.840 0.066

Log of Major Road Annual Average Daily Traffic 0.437 0.217 2.010 0.044

Log of Minor Road Annual Average Daily Traffic 0.209 0.086 2.440 0.015

Signalized Intersection w/ 1 or more signalized MUTs 0.682 0.237 2.880 0.004

Commercial Vehicle Percent -0.090 0.045 -1.990 0.047

Overdispersion Parameter 0.355 0.113

Variance of Random Effects, σ2 0.099

Increased frequency of rear end collisions was associated with the presence of signalized

MUTs at signalized intersections, in comparison to signalized and unsignalized intersections

without MUTs as shown in Table 31. This result is somewhat counter-intuitive, as one might

expect that by taking the left-turning vehicles out of the through traffic flow, these types of crashes
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would likely be reduced. This result is potentially attributable to additional stopping points for the

through traffic. Additionally, since signalized MUTs are indicative of a large volume of would-be

left turning vehicles, it is possible that the queue for the MUT may be spilling into the through

lanes, resulting in more crashes.

Table 31. Rear-End Crash Frequency Model Results
Parameter Estimate Std. Error z-Value Significance
Intercept -6.883 1.799 -3.830 <0.001
Log of Major Road Annual Average Daily Traffic 0.663 0.176 3.780 <0.001
Log of Minor Road Annual Average Daily Traffic 0.201 0.087 2.300 0.021
Signalized Intersection, 1 or More Signalized MUT 0.640 0.239 2.680 0.007
Unsignalized Intersection with MUTs -0.712 0.621 -1.150 0.251
Overdispersion Parameter 0.370 0.116
Variance of Random Effects, σ2 0.104

Conversely, unsignalized intersections with MUTs were associated with lower frequency

of rear-end collisions. It is likely that operational efficiency of these types of locations results in

fewer rear-end collisions caused by excessive queuing of vehicles. Additionally, by passing

through an intersection, drivers may be more attentive to what is going on in front of them and

more likely to notice other drivers decelerating to enter the MUT.

Ultimately, the results for the boulevard-level and the site level analyses provide some

insight into the safety effects of MUTs. At a boulevard level, the presence and density of MUTs

was shown to:

 Reduce total crash frequency and crash frequency for head-on and angle crashes at

boulevard intersections, which are typically some of the most severe crashes,

 Be associated with higher sideswipe and rear end crashes along the segment

portions of the boulevards,
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 At the MUT level, signalized MUTs are associated with higher crash frequency as

compared to unsignalized MUTs, largely due to higher traffic volumes attributable

to turning movements and adjacent intersections

At the aggregate/site level, the results for total crash frequency generally followed those of

the disaggregate level analysis in that:

 Altogether, the presence of MUTs was associated with a decreased crash frequency,

although this finding was not highly significant from a statistical standpoint,

 The presence of unsignalized MUTs was associated with lower total crash and

angle crash frequency. Signalized MUTs were shown to have an opposite effect,

although due to the small sample size, their effects were not significant at the 95%

confidence level.

Collectively, these analyses demonstrate that MUTs have safety benefits for arterials,

therefore, studying the safety impacts of MUTs at isolated intersections may not fully capture their

benefits on the corridor.
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CHAPTER 3. COMPARING THE SAFETY PERFORMANCE OF TEMPORARY TRAFFIC

CONTROL STRATEGIES IN FREEWAY WORK ZONES

This study involves the development of SPFs for freeway work zones. The Highway Capacity

Manual defines work zones as “area of highway in which maintenance and construction operations

are taking place that impinge on the number of lanes available to moving traffic or affect the

operational characteristics of traffic flowing through the area” (TRB, 2000). The presence of a

work zone generally results in both mobility and safety impacts to road users. Minimizing the

adverse impacts associated with work zones has become a priority for road agencies, especially

since the inception of the Work Zone Safety and Mobility Rule (Scriba et al., 2005). Assessing the

potential impacts of work zone temporary traffic control strategies on traffic safety (i.e., crashes,

injuries, and fatalities) continues to be a primary emphasis of work zone research. In 2010, the

Highway Safety Manual (HSM) was published, providing a framework for road agencies to

estimate the safety performance of various road facility types (AASHTO, 2010). The first edition

of the HSM provides methods for estimating the effects of work zones on limited access facilities.

However, this guidance is very general and this is an area that has been significantly under-

researched in the broader safety literature. This study will estimate SPFs that consider freeway

geometry and traffic conditions, as well as the effects of various temporary traffic control strategies

such as lane shifts, shoulder closures, and lane closures.

3.1 Literature Review

A recent paper summarized most of the work in this area dating back to 1978 (Yang et al.,

2014). Much of the work in this area has involved estimating the change in crash risk that under

work zone operations as compared to “normal” (i.e., non-work zone) traffic operations. This
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research has shown work zone crash risk to increase from 20 to 30 percent as compared to normal

operations (Ullman, 2008). The crash risk for a given work zone is obviously dependent upon a

number of factors, some of which are related to the work activity and others that are related to site-

specific factors, such as traffic volumes and roadway geometry. Recent work has aimed to discern

how crash risk varies with respect to these factors. Research has shown that when work activity

results in the temporary closure of travel lanes, the crash risk for individual motorists increases by

66 percent during daytime conditions and 61 percent at night as compared to similar non-work

zone conditions (Ullman, 2008).

As road agencies are faced with a myriad of potential alternatives in developing temporary

traffic control strategies for a specific work zone, the ability to estimate the impacts of these

alternatives on the frequency or rate of traffic crashes is an important criterion. To this end, the

Highway Safety Manual (HSM) provides a series of crash modification functions (CMFs) that can

be used to estimate the increase in crash risk posed by work zone operations (AASHTO, 2010).

These CMFs provide an estimate of the increase in crashes that would occur within a given work

zone based upon work zone length and project duration. Equation 6 and Equation 7 illustrate the

increases in crashes that would be expected to occur as the length of the work zone (in miles)

increases or as the project duration (in days) increases, respectively.

= 1.0 + (% × . )
(Eq. 6)

= 1.0 + (% × . )
(Eq. 7)

To utilize these CMFs, an initial baseline estimate of the number of crashes at a given

location is required (e.g., the number of crashes that would occur at the work zone location in the

absence of a work zone during the same analysis period). This baseline estimate is then multiplied
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by the appropriate CMF to estimate the total number of crashes that would occur while the work

zone is in place. For example, a 10-percent increase in work zone length would result in a 6.7-

percent in crashes (1.0+ (10% x 0.67)/100).

The CMFs from the HSM were based upon data from 36 work zones in California (Khattak

et al., 2002). Recently, data from the state of Missouri was used to develop similar CMFs as part

of a project conducted through the Smart Work Zone Deployment Initiative (Sun et al., 2014).

This research, which was based on data from 162 work zones in Missouri, showed similar effects.

The magnitude of these effects was slightly less pronounced than the California study. Crashes

increased by 0.58 percent for every one-percent increase in work zone length and by 1.01 percent

for every one-percent increase in work duration. The research literature includes a several

additional studies that have involved the development of CMFs, as well as safety performance

functions (SPFs), which can be used to estimate the number of work zone crashes as a function of

characteristics such as AADT, work zone length, and project duration.

A 1996 Indiana study showed crash rates in work zones were significantly higher than the

same roadways under non-work zone conditions (Pal and Sinha, 1996). Similar models were

developed as part of a 2000 study that related crashes to project duration, type of work, AADT and

work zone length (Venugopal and Tarko, 2000). Separate models were calibrated for the work

zone area, as well as the approaches immediately upstream of the work zone.  As a part of NCHRP

Project 17-30, data from California, North Carolina, Ohio, and Washington were used to estimate

a series of negative binomial models for work zone crashes by severity level (Srinivasan et al.,

2011). Based on the results of these models, separate CMFs were estimated for daytime and

nighttime conditions. A recent New Jersey study examined the effects of work zone length on

crash frequency while accounting for potential errors in length measurement due to deviations
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from the construction schedule (Ozturk et al., 2013). Results showed that crashes were influenced

by work zone length, traffic volumes, speed limit, lighting condition, and the number of

operational and/or closed lanes.

Research into the effects of specific temporary traffic control strategies, such as lane

closures, has been more limited. A 2014 Indiana study found crashes to be affected by work zone

length, traffic volume, and various roadway (e.g., shoulder widths) and work zone (e.g., lane shift,

lane split, etc.) features. Crashes were also found to vary by time of year and region (Chen and

Tarko, 2014). This study also compared the results of several analytical frameworks that address

specific analytical concerns that are common in work zone data. Further research is warranted as

to practical and analytical issues involved in the analysis of work zone safety data.

This study will provide an important contribution to the research literature through the

analysis of data from 790 closures that were implemented as a part of construction projects

throughout Michigan. Safety performance functions (SPFs) are estimated to examine differences

in safety performance among the four types of work zones, shoulder closure, single lane closure,

multi-lane closure, and lane shifts, while controlling for site-specific factors such as AADT,

segment length, and work zone duration.
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3.2 Data Sources and Collection

For the purposes of this study, data were collected from work zones that included either a

shoulder closure, single-lane closure, double-lane closure, or lane shift. Examples of such work

zone types are illustrated in Figure 10.

Figure 10. Examples of the Four Types of Lane Closures

The data for these closures are obtained for projects that occurred between 2008 through 2013.

The data sources were:

1. Lane closure reports maintained by the Michigan Department of Transportation (MDOT);

2. Annual average daily traffic estimates from an MDOT roadway inventory file;

3. Traffic crash information from the Michigan State Police crash database, and

4. MDOT Sufficiency Files for years 2007-2013
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At the onset of the study, lane closure reports were used to identify those closures that were

of at least 0.4 miles in length and at least 3 days in duration. These thresholds were established to

ensure: (a) the work zone was sufficiently long such that crash data could be accurately assigned

to the associated road segment; and (b) the duration was long enough such that some baseline crash

frequency could be established.

When identifying boundaries for the work zones, these limits were established at the

nearest upstream/downstream overpass or entrance/exit ramp. Consequently, these limits generally

extend outside of the work zone and include portions of the freeway segments that were

immediately upstream and downstream of the actual work zone area. Similarly, the closure dates

were as noted in the MDOT lane closure database. As some closures were intermittent, it is

possible that temporary traffic control was not in place during the entirety of the analysis period.

Consequently, the results of this study are likely to be conservative in terms of the estimated

impacts for specific traffic control strategies.

In addition to collecting data for the work zone period, traffic crash, volume, and geometric

data were also obtained for the same time period from the prior year. These data serve as a baseline,

allowing for a comparison of how crash rates change when a work zone is in place as compared to

normal roadway operations. Table 32 provides summary statistics for both the pre-work zone

period, as well as the period during which a closure was in place. The variables that are included

in both data sets are as follows:

 Average annual daily traffic

 Length of analysis segment

 Duration of analysis period
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 Geometric characteristics, including left and right shoulder widths, median width, and type

of barrier present

 Total, property damage only (PDO), and injury crashes

In addition to these general site characteristics, data were also obtained from the MDOT

lane closure file as to the type of closure that was in place at a given site. These include shoulder,

single-lane, and multi-lane closures, as well as lane shifts (e.g., redirecting one or more travel lanes

onto the shoulder). The length, duration, and AADT data were comparable to those from prior

studies, including the California study that was the basis for the HSM methods (Khattak et al.,

2002) and the Missouri study (Sun et al., 2014). Traffic volumes were relatively stable over the

two analysis periods. The segment lengths and durations of the analysis periods were identical due

to the case-control nature of the study design. When examining crash data at the aggregate level,

total and PDO crashes were higher when the work zones were in place while injury crashes were

marginally lower.

Table 32. Descriptive Statistics for Work Zone Data (N = 790 segments)
Pre-Work Zone Period Work Zone (Closure) Period

Parameter Mean Std. Dev. Mean Std. Dev.

Annual Average Daily Traffic (AADT) 38618.12 22205.89 38077.65 21703.39

AADT/Open Lane 13189.44 6198.45 24255.22 16419.58

Length of Work Zone Segment 5.00 5.54 5.00 5.54

Duration of Analysis Period 28.78 46.20 28.78 46.20

Open Lanes 2.83 0.58 1.76 0.76

Percent Commercial Vehicles 10.00 6.63 10.00 6.72

Shoulder Closure N/A N/A 0.15 0.36

Single-Lane Closure N/A N/A 0.56 0.50

Multi-Lane Closure N/A N/A 0.24 0.43

Lane Shift N/A N/A 0.04 0.19

Total Crashes 4.74 11.86 5.06 12.95

Property Damage Only Crashes 3.73 9.00 4.08 9.85

Fatal/Injury Crashes 1.01 3.10 0.98 3.43

N/A = not applicable
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3.3 Methodology

Once the database was compiled, a series of statistical analyses was conducted to ascertain

how these crash trends related to the work zone and other site characteristics. Various count data

model frameworks were considered in the development of safety performance functions (SPFs).

This included Poisson and negative binomial models, which were explained in the previous

section, as well as random effects and random parameter variants. A summary of these

methodological frameworks is provided below and further details of the methods can be found in

recent state-of-the-art review papers (Lord and Mannering, 2010; Mannering and Bhat, 2014).

One concern is the potential for temporal correlation in crash counts on the same road

segments over time. For example, it is anticipated that a freeway segment that experiences a higher

number of crashes during the pre-work zone period may also experience an elevated crash risk

during the construction period, as well. In order to address such correlation, a random effects

framework is utilized, wherein the constant term for the model is allowed to vary across road

segments as shown in Equation 8.= + (Eq. 8)

where the i subscript indexes a specific road segment and is a random error term that is

assumed to follow a specific distribution. The error term is assumed to follow a normal

distribution, with a mean of zero and variance to be estimated as a model parameter, which is

allowed to vary across road segments and work zones. This effectively results in the constant term

being treated as a random parameter, which is able to capture the effects of unobserved

heterogeneity that is unique to each segment during both the pre-construction and construction

periods. Intuitively, similar heterogeneity can be expected as to the effects of other parameters in

the model. For example, specific traffic control strategies may exhibit different safety impacts
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across different work zones or road segments due to unobserved factors. Consequently, these

parameters may be assumed to follow a similar distribution. Under such a framework, the Poisson

parameter is now conditioned on the distribution of the error terms as shown in Equation 9.| = (Eq. 9)

Parameters are estimated through the log-likelihood function shown in Equation 10.= ∑ ∫ ( ) ( | )∇ (Eq. 10)

where g(.) is the probability density form of the random error term, which is assumed to be

normally distributed. As the log-likelihood function is computationally cumbersome, the

parameters are estimated through simulation-based maximum likelihood. The probabilities are

approximated by drawing values of the parameters from g(.). The procedure is repeated across

many samples and the computed probabilities are averaged to compute the likelihood function.

Halton draws are used an efficient alternative to random draws. Further details of the random

parameters framework can be found in the research literature (Halton, 1960; Bhat, 2003; Greene,

2007; Chen and Tarko, 2014).

In order to interpret the practical impact of the variables affecting work zone crash risk,

elasticities are calculated. Elasticities represent the average percent change in crash frequency

associated with an increase in one of the independent variables. For continuous variables, the

elasticity is calculated as shown in Equation 11.= (Eq. 11)

where E represents the elasticity; λi is the expected crash frequency for segment i; and xij is the jth

explanatory variable related to segment i. For the purposes of this study, continuous variables (e.g.,

AADT, work zone length, project duration) were included in the equation in log-form.

Consequently, these parameter estimates directly represent the percent increase in crashes
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associated with a one-percent increase in the specific variable. Alternately, for binary indicator

variables (i.e., closure type), a pseudo-elasticity can be calculated using Equation 12.

= (Eq. 12)

where βj is the parameter estimate for variable j. The pseudo-elasticity represents the percent

change in crashes when xij is changed from zero to one (e.g., the change in crashes related to a

specific closure type).

3.4 Results and Discussion

As a part of the analysis, a series of count data models were estimated, which included

Poisson and negative binomial models, as well as random effects (i.e., only the constant term is

random) and full random parameters negative binomial models. The goodness-of-fit for these

models was compared across models using likelihood ratio (LR) tests with the results illustrated

in Table 33. The LR statistic is distributed as chi-squared with degrees of freedom equal to the

difference in the number of parameters between the restricted model and the more flexible,

unconstrained model. The null hypothesis for the LR test is that the log-likelihood of the more

flexible model does not provide improved fit as compared to the more restrictive model. The log-

likelihood results in Table 33 show consistent improvements in fit that are statistically significant

at a 99-percent confidence level when moving from the most restrictive (Poisson) model to the

more flexible (random parameters negative binomial) model. Ultimately, the random parameters

negative binomial model is able to accommodate the three key analytical concerns noted

previously:

(1) overdispersion, wherein the variance of crash counts is significantly greater than the mean

as indicated by the overdispersion parameter, which is shown to be significantly greater

than zero;
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(2) site-specific temporal correlation due to common, unobserved factors that are present at

each segment during the pre- and during-work zone periods as reflected by the standard

deviation of the constant term, which is found to be significantly greater than zero; and

(3) unobserved heterogeneity as demonstrated by those predictors that show significant

variability from segment to segment, which are also indicated by standard deviations of

several coefficients that are also significantly greater than zero. This is especially important

in the case of AADT, which as mentioned previously, was not reflective of traffic volumes

while the work zones were in place. The framework allows for capturing the effect of sites

with lower or higher than “normal” volumes.

Table 33. Goodness-of-Fit Comparison
Model Formulation

Log-
Likelihood

LR
statistic

df Significance Mc-Fadden R2

Constant-Only Poisson -11388.4 N/A N/A N/A N/A
Poisson -3121.3 16534.2 7 <0.001 0.726
Negative Binomial -2829.0 584.6 1 <0.001 0.752
Random Effects Negative Binomial -2788.2 81.6 1 <0.001 0.755
Random Parameters Negative Binomial -2783.8 8.8 8 <0.001 0.756

N/A = not applicable

Table 34 presents the final model results, which include details of each coefficient, the

associated standard error, t-statistic, and p-value. All variables, except for the shoulder closure

indicator, are found to have an impact that is statistically significant at a 95-percent confidence

level. Random parameters are indicated by those variables that have a standard deviation that is

significantly different from zero. For those variables where the standard deviation is not significant

different from zero (indicated by N/S), these parameter effects are found to be fixed (i.e., constant

across segments).
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Table 34. Results of Random Parameters Negative Binomial Model

Variable Coefficient
Std.
Error

t-
statistic P-value

Intercept -14.112 0.344 -41 <0.001

Std. dev. 0.315 0.017 18.38 <0.001

Log of Annual Average Daily Traffic 1.096 0.03 36.46 <0.001

Std. dev. 0.012 0.002 7.32 <0.001

Log of Segment/Work Zone Length 0.821 0.02 40.3 <0.001

Std. dev. 0.023 0.009 2.4 0.016

Log of Duration of Analysis Period 0.897 0.013 67.2 <0.001

Std. dev. N/S N/S N/S N/S

Shoulder Closed (1 if yes; 0 otherwise) N/S N/S N/S N/S

Std. dev. N/S N/S N/S N/S

One Lane Closed of Two per Direction (1 if yes; 0 otherwise) 0.238 0.081 2.93 0.003

Std. dev. 0.477 0.069 6.87 <0.001

One Lane Closed of Three-plus per Direction (1 if yes; 0
otherwise)

0.126 0.043 2.89 0.004

Std. dev. 0.134 0.039 3.45 <0.001

Multiple Lanes Closed (1 if yes; 0 otherwise) 0.15 0.056 2.68 0.007

Std. dev. 0.155 0.052 2.99 0.003

Lane Shift (1 if yes; 0 otherwise) 0.505 0.079 6.42 <0.001

Std. dev. 0.177 0.083 2.15 0.032

Overdispersion parameter (α) 0.077 0.011 7.23 <0.001

N/S = not statistically significant

Table 35 presents a summary of the elasticities based upon these model results. For those

parameters that are found to vary across road segments, three elasticities are presented: one for the

lower bound (calculated based on coefficient minus 1.96 standard deviations), one for the average

effect, and one for the upper bound (calculated based on coefficient plus 1.96 standard deviations).

These bounds demonstrate the variability in each parameter’s effects across the entire sample of

segments/work zones.
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Table 35. Summary of Elasticities from Random Parameters Negative Binomial Model
Parameter Lower Bound Average Effect Upper Bound

Annual Average Daily Traffic (AADT)a 1.07 1.10 1.12

Segment/Work Zone Lengtha 0.78 0.82 0.87

Duration of Analysis Perioda N/S 0.90 N/S

Shoulder Closedb N/S N/S N/S

One Lane Closed of Two per Directionb -104.6 21.2 69.6

One Lane Closed of Three-plus per Directionb -15.3 11.8 32.6

Multiple Lanes Closed -17.4 13.9 36.9

Lane Shiftb 14.0 39.6 57.6
aElasticities represent the percent change associated with a one-percent increase in a continuous variable.
bPseudo-elasticities represent the percent change associated with changing indicator variable from zero to one.
N/S = not statistically significant

Turning to the practical aspects of these results, annual average daily traffic (AADT) is

found to have an effect that is roughly elastic (i.e., a one-percent increase in volume results in an

increase in crashes of 1.07 to 1.12 percent). The effects of traffic volume are found to vary across

study locations (as indicated by the random parameter), which may reflect the effects of

unobserved differences specific to these road segments or work zones. This heterogeneity may

also be reflective of imprecision in the volume estimates for each location. It is important to note

that the AADT estimates used in the development of these models reflect annual averages.

Consequently, these results may actually underestimate the effects of AADT since volumes are

expected to be lower during the period when a work zone is in place due to diversion by travelers.

Subsequent research is warranted, which considers actual volumes under work zone conditions to

capture potential impacts due to diverted traffic for example. To this end, recent work in Wisconsin

has demonstrated the integration of crash data with information on real-time traffic and lane

closures (Greene, 2007).

In contrast to AADT, the effects of segment length and duration were slightly inelastic.

Table 36 provides a comparison of these results with prior empirical results from California

(Khattak et al, 2012), Missouri (Sun et al, 2014), and Indiana (Chen and Tarko, 2014). The
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Michigan data show work zone length to exhibit a slightly larger influence while project duration

exhibits a less pronounced influence.

Table 36. Comparison of Work Zone Duration and Length Effects to Prior Studies
Variable California Missouri Indiana Michigan

Work Zone Length 0.67 0.58 0.80 0.82

Project Duration 1.11 1.01 1.00 0.90

Crashes increased by 0.9 percent for every one-percent increase in project duration. This

finding suggests crash risk is highest at short duration work zones and tends to level off over time.

This may be reflective of drivers acclimatizing themselves to a work zone over time. It is important

to note that the Michigan work zones included a number of projects with shorter durations (a

minimum of 3 days) than the California and Missouri studies, both of which established minimum

project durations of 15-16 days. The Indiana study compared per-month averages for longer

duration work zones.

The effects of segment length varied from one work zone to another, with crashes

increasing from 0.78 percent to 0.87 percent for a one-percent increase in length. This finding may

be interpreted similarly to the duration effect as crash risk tends to level off, a possible indication

of adaptation in driver behavior over longer work zones. Table 36 shows the duration effect tended

to be less pronounced in Michigan as compared to findings from other states.

Focusing on the potential effects of traffic control strategies, crash frequencies were not

significantly different when a shoulder closure was in effect as compared to normal (i.e., pre-work

zone) traffic conditions. This is interesting and may be reflective of shoulder closures having

minimal impacts on driver behavior. Driving simulator research has shown crash risk to be lower

where shoulder work is occurring as opposed to where lane closures are present (Cheng et al,
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2015). Subsequent research is warranted to investigate whether the type or intensity of work

occurring on the shoulder may have an impact on crash risk.

In contrast to shoulder closures, crashes increased by 21.2 percent on average for single-

lane closures that occurred along two-lane (per direction) freeways and by 11.8 percent where

single-lane closures occurred on freeways with more than two lanes per direction. Crashes were

approximately 13.9 percent higher where multi-lane closures were in place. There was substantial

variability in these effects across work zones, with some locations exhibiting lower crash rates

(i.e., fewer crashes than during similar pre-work zone conditions) and others experiencing

significantly higher crash rates than during the pre-work zone period. These differences may be

due to additional unobserved characteristics (e.g., temporary traffic control, roadway geometry) or

to variability in normal traffic volumes when the work zones were in place.

The most pronounced construction related crash increases occurred where lane shifts were

present.  In these cases, crashes increased by 39.6 percent on average as compared to the pre-

construction periods.  This is consistent with prior research, which has shown significant increase

in crashes at work zones where lane shifts or lane splits were utilized (Chen and Tarko, 2014).

This result is consistent with a priori expectations as lane shifts are more variable, both

geometrically and from a human performance standpoint, compared to standard lane closures.

Lane shifts typically include movement of traffic onto the shoulder or a temporary lane (or

shoulder extension), which creates several potential issues.  First, the quality of the lane-to-

shoulder (or lane-to-temporary lane) transition may impact the ability for drivers to negotiate the

lane shift, which may be further exacerbated by the presence of shoulder rumble strips. Secondly,

the loss of usable shoulder area greatly reduces the shy line, thereby positioning vehicles closer to

the pavement edge and any barriers that may be present, further increasing the risk of lane-
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departure collisions.  The reduced length of shifting tapers compared to merging tapers may also

negatively impact human performance.  Furthermore, because the capacity is not reduced to the

level of a standard lane closure, lane shifts create the potential for higher speeds while approaching

the work zone and within the transition area. As lane shifts comprised only four percent of the total

sample, additional research is warranted to better understand the reasons for this increase.
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CHAPTER 4. CONCLUSIONS

Ultimately, this research provides findings that can be utilized by state agencies as part of

more well-informed decision-making processes, which would allow agencies to strategically plan

to optimize safety in consideration of issues of pertinence to two specific settings:

 in the vicinity of median U-turns on urban and suburban arterials, and

 in freeway work zones under various temporary traffic control strategies

The following sections summarize the key findings in each of these areas, in addition to

outlining the limitations associated with each study and identifying prospective avenues for future

research.

4.1 Safety Performance of MUTs on Urban and Suburban Arterials

MUTs have been present in urban and suburban arterials in the state of Michigan since the

mid-1960s. While initially they were designed and constructed to combat congestion problems due

to interlocking left turn movement, they have also been studied for their safety effects. The first

portion of this study presents the results and findings from the analysis of 637 MUTs located in 4-

lane, 6-lane, and 8-lane divided arterials. Considering that the installation of MUTs in Michigan

is widespread at the boulevard level and not simply in isolated cases of intersections along these

boulevards, the first part of the examination of the effects of MUTs was conducted on a boulevard

level separately for intersections, segments, and lastly an MUT-specific crash frequency model

was developed. The presence of MUTs and the prohibition of left turn movements at intersections

were accompanied by lower crash frequencies, especially for head-on crashes and angle crashes,

which are some of the most severe crashes that occur at traditional intersections. Other variables

that are related to higher traffic volumes, such as number of lanes, or introduce conflict points in
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the vicinity of the intersection, such as the presence of right turn lanes, were found to have an

increasing effect on total crash and angle crash frequency. The highest impact by left turn

prohibition and/or the presence of MUTs was seen on head on crash frequency. This is to be

expected given that head-on and head-on-left turn crashes should, for the most part, occur when

left turn movements are allowed at the intersection. On a segment level, the MUT density (the

number of MUTs per mile length of the segment) was associated with higher total crash, sideswipe,

and rear end crash frequency. This is expected given that more traffic is present downstream of

the intersection if the left turn is prohibited. Other variables that had a decreasing effect on

intersection and segment crash frequencies were the presence of parking and presence of schools.

The presence of parking near intersections could provide a calming effect on traffic while both of

these variables might make drivers more aware of their surroundings and driving behavior, thus

lowering the odds for conflicts. MUT specific crash frequency was affected by traffic volumes on

the roadway as well as the MUT turning lane(s) and the type of traffic control of the MUT. Given

that not all other states have fully embraced the MUT as an intersection design alternative, this

study provides important findings with regards to the safety performance of such configurations.

One limitation to this study could be the limited size of the intersection sample. The

intersections sampled from the pool of intersections that were manually reviewed and for which

extensive data was manually collected. Additionally, the second constraint was that these

intersections had to be located on the divided arterials to assess the safety impacts of MUTs, which

are only present in divided roadway facilities. This allowed for 69 signalized intersections (27 of

3SG and 42 of 4SG) and 59 stop controlled intersections (43 of 3ST and 16 of 4ST). One caveat

is that 4ST intersections generally exist in suburban or rural locations where traffic is not as large,

whereas 3ST intersections are very frequent along arterials in urban areas. A solution for this could
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be to manually collect intersection geometric data for additional intersections located along

divided arterials. This can, however, be a cumbersome task as previously explained in Section 2.2.

The second portion of the study examined the safety performance of MUTs at a site level,

or in other words, for isolated intersections and the road segment following the intersections up to

and including the MUT installations. Sites with MUTs present were compared to similarly long

sites with left turns. Results showed that the presence of MUTs was associated with lower total

crash frequency overall. At a more granular level, various combinations of intersection-to-MUTs

by traffic control were examined. It was found that for locations with unsignalized MUTs, a safety

benefit was observed for both signalized and unsignalized intersections. Additionally, unsignalized

MUTs were associated with lower angle crash frequency, whereas signalized MUTs were

associated with higher sideswipe and rear-end crash frequency. Ultimately, this cross-sectional

analysis presents a snap shot of the relationship between various intersections as they currently

exist. MUTs may be utilized as a context-sensitive solution to existing operational or safety

problems, therefore, one way in which this study could be improved is through the implementation

of a before-after framework. Unfortunately, data from far enough in the past was not readily

available, as MUTs have frequently been used in Michigan for some time.

MUTs may be utilized as a context-sensitive solution to existing operational or safety

problems, therefore, one way in which this study could be improved is through the implementation

of a before-after framework. Unfortunately, data from far enough in the past was not readily

available, as MUTs have frequently been used in Michigan for some time. Future work could

monitor road infrastructure upgrades for additional MUT construction sites to conduct a B/A study.

An additional point that cannot be overstated is that MUTs are not necessarily a treatment with

effects specific to an intersection. In fact, MUTs likely affect the upstream and downstream traffic.
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Locations that utilize MUTs typically do not have direct median access to driveways and minor

roads up and down stream of the intersection, therefore, more vehicles may be funneled through

intersections than would have otherwise. In this sense, focusing solely on the safety performance

of the area immediately around the intersection likely underestimates the actual safety benefit of

the MUT.

Future research could involve the study of RCUTs and J-turns in the state of Michigan

could potentially add to these findings for a more comprehensive list of intersection design

alternatives. Other areas for research include the signage at such designs, especially given that the

intersection design alternatives are not installed in every state. This in turn, leads to a lack of

uniform signing, which could create issues with driver comprehension and compliance with

existing signs.

4.2 Safety Performance of Temporary Traffic Control Strategies in Freeway Work Zones

This study provides high-level estimates of how crash frequency varies under various

temporary traffic control strategies that are commonly used in freeway work zone settings. The

specific strategies evaluated include shoulder closures, single- and multi-lane closures, and lane

shifts.

Interestingly, no difference was found between the crash rates at work zones where

shoulder closures were in effect and normal (pre-work zone) conditions on these same segments.

Both single- and multi-lane closures showed increased crash rates, which were generally similar

in magnitude. The increase was more pronounced when the single-lane closure occurred along a

two-lane (per direction) freeway as compared to freeways with greater numbers of travel lanes.

Crash rates were also significantly higher where lane shifts were utilized, which is likely a function
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of higher travel speeds and human factors associated with the transition from a normal travel path

to the work zone environment.

Ultimately, there was significant variability in the effects of single- and multi-lane closures,

as well as lane shifts, across different work zones and road segments. These differences may be

reflective of a variety of important unobserved factors that were unique to either the specific

freeway segment or work zone temporary traffic control plan. A principal advantage of the random

parameter negative binomial model estimated as a part of this study is its ability to accommodate

such unobserved heterogeneity. This analysis framework was also able to address concerns related

to temporal correlation among crash counts on the same road segments (i.e., some segments tend

to experience a higher or lower number of crashes than average over time due to unobserved site-

specific factors).

The research also provides estimates of the impacts of changes in traffic volumes, work

zone length, and construction period duration. Collectively, these results provide information that

can be used as a part of high-level, sketch planning exercises in comparing various temporary

traffic control strategies. However, additional research is warranted in order to better understand

the specific factors that influence these aggregate work zone safety trends. The following are a few

of the factors that could not be examined as a part of this study that could be included in future

analyses:

 whether work activity was ongoing at the time of a closure and, if so, the type of activity;

 specific elements of the temporary traffic control plan that was in place, including the type

and locations of specific traffic control devices; and

 detailed geometric characteristics associated with each of the road segments.
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One limitation to such research is the general lack of comprehensive work zone data in a

usable format for analysis purposes. Many state departments of transportation (DOTs) utilize daily

logbooks, which are typically not in a format that can be easily linked together with existing crash,

volume, and roadway inventory databases. Another limitation is the lack of sufficient traffic

volume data during periods when a work zone is in place. While various states are now monitoring

real-time traffic information for high-volume work zones, there remains a gap in the research

literature as to work zone related diversion and the related impacts on crash rates. The random

parameter framework utilized as a part of this study allowed for this variability in traffic volumes

to be accounted for. However, explicit consideration of work zone specific AADT would allow

for increased precision in determining the impacts of specific traffic control strategies.

In lieu of addressing these types of data issues, another approach would be the utilization

of a case-control design, wherein the specific temporary traffic control features can be varied from

one work zone to another while maintaining consistency with respect to other key factors.

However, such an approach introduces additional issues and may require substantive involvement

with both the DOT and any involved contractors. The use of naturalistic driving data, such as

through the second Strategic Highway Research Program (SHRP2), represents another potential

avenue by which challenging data collection hurdles may be addressed in order to better

understand driver response in work zone environments. Such high-fidelity data will provide an

important complement to the higher-level assessments of work zone safety such as that presented

in this study.
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